

Amended Drinking Water Quality Management Plan

Pormpuraaw Aboriginal Shire Council Service Provider Number 148 10 January 2023 Prepared by

This document has been prepared by NWM for Pormpuraaw Aboriginal Shire Council in 2021 and is our current DWQMP.

Pormpuraaw Aboriginal Shire Council has amended the document based upon the independent audit conducted by Bligh Tanner in late November 2022.

Document Control

Pormpuraaw Aboriginal Shire Council considers that this document contains matters relating to the business and financial affairs of Pormpuraaw Aboriginal Shire Council and its

disclosure may be contrary to the public interests under section 49 and schedule 4 of the Right to Information Act 2009.

Pormpuraaw Aboriginal Shire Council would therefore be substantially concerned if this document was released publicly. Given this, Pormpuraaw Aboriginal Shire Council provides this copy of the Drinking Water Quality Management Plan to the recipient agency on the understanding that if the agency receives a right to information request that captures this document, it will formally consult with the Pormpuraaw Aboriginal Shire Council under section 37 of the Right to Information Act 2009 before a decision is made on the Right to Information Act.

Document History

#	Author	Checked	Approved	Issue Purpose	Date
Draft	AH/BP	RM	EN	For Board review and endorsement	23-May-18
Draft			Board approval for submission to DEWS		-
А	BP	RM	EN	Incorporating preliminary comments from DEWS	9-Aug-18
В	BP	RM	EN	Board approval for final submission to QWSR	10-Aug-18
с	NWM	AH	RM	Plan review including layout update, risk assessment update with cybersecurity	7-Oct-20
C-a	NWM	AH	RM	Include sulphuric acid dosing unit, risk assessment and HACCP clarifications	19-Mar-21
D	JR	AV/SF	EN	Amended plan based on the independent review	10-Jan-23

PASC Approvals

This document is authorised for release once all signatures have been obtained. In signing this approval, I agree that the document meets the standards required for the project and approve the

project to progress.

This document is endorsed by the Senior Plumber, Andrew Verevis

Signature

Date 18/1/23

This document is endorsed by the Executive Manager Operations, Jason Raggatt

Signature

Date 18/1/23

Glossary of	Terms		
Acronym	Definition		
ADWG	Australian Drinking Water Guidelines 2016, published by the National Health and Medical Research Council of Australia.		
CCP	Critical Control Point		
CFU/100mL	Colony-forming units per 100millilitres		
DRDMW	Department of Regional Development, Manufacturing and Water		
DWQ	Drinking Water Quality		
DWQMP	Drinking Water Quality Management Plan		
E. coli	Escherichia coli, a bacterium that is considered to indicate the presence of faecal contamination and therefore a potential health risk		
HACCP	Hazards and Critical Control Point		
HBT	Health Based Targets		
ISO	International Organization for Standardisation		
KPI	Key Performance Indicator		
LRV	log ₁₀ reduction value		
mg/L	Milligrams per litre.		
MPN/100mL	Most Probable Number per 100 millilitres		
NHMRC	National Health and Medical Research Council		
NTU	Nephelometric Turbidity Units		
NWC	National Water Commission		
PASC	Pormpuraaw		
QCP	Quality Control Point		
QH	Queensland Health		
UV	Ultra-Violet		
WQ	Water Quality		
WSAA	Water Services Association of Australia		
WTP	Water Treatment Plant		
<	Less than		
>	More than		

Contents	
1. Executive Summary	6
2. System analysis and management - Assessment of the Drinking Water Supply System.	7
3. Preventative measures for drinking water	7
4. Operational procedures and process control	7
5. Verification of Drinking Water Quality	7
6. Management of Incidents and Emergencies	7
7. Employee Awareness and Training	6
8. Community Involvement and Awareness	7
9. Documentation and Reporting	8
10. Evaluation and Audit	9
11. Review and Continual Improvement	11
12. References	12
Appendix A- Water Supply System Information	13
Appendix B: Water Quality Analysis	24
Appendix C: Health based Targets Assessment	45
Appendix D: Risk Assessment	53
Appendix E: HCCAP Summary	59
Appendix F: Operational Procedures and Monitoring	61
Appendix G: Verification Procedures and Monitoring	68
Appendix H: Complaint Checklist and Register	73
Appendix I: Drinking Water Quality Management Improvement Plan	76
Appendix J: Acid Dosing System Details and Operations /Maintenance Procedures	82
Appendix K: Drinking Water Policy1	00
1. POLICY STATEMENT	00
2. PRINCIPLES	00
3. SCOPE	00
4. RESPONSIBILITY	00
5. DEFINITIONS	00
6. POLICY	00
7. LEGAL PARAMETERS 1	01
8. ASSOCIATED DOCUMENTS 1	01

1. Executive Summary

7. Employee Awareness and Training

7.1 Employee Awareness and Involvement

Records of the training that is undertaken by our personnel are kept as part of the councilwide training database.

There would be a benefit in undertaking additional targeted training of individuals to aid in ongoing staff development.

To enhance the management system, we will ensure staff have an understanding of this plan and procedures.

Internal training for operational staff is conducted by way of Toolbox Talks. These are short group information sessions that ensure staff know their responsibilities and are made aware of any changes that affect their daily work processes and tasks.

7.2 General Water Employee Training

Where there are deficiencies, specific staff training is planned to be undertaken by the Water Industry Operators Association.

There is currently no formalised procedure for the identification of training requirements. It is proposed that the following be undertaken:

- A training needs analysis;
- Training & Development Plan;
- Provision of training and skills development; and,
- Maintaining or enhancing water quality management skills in the organisation through recruitment, succession planning, mentoring etc.

For individuals, the job skills required and their current competency level should be consistent to allow for staff turnover. It is expected that the following generic list will be used as the basis of the analysis:

- General water quality understanding;
- Environmental obligations;
- Water biology and water chemistry;
- Specific training to optimise system performance such as:
 - Proper filtration operation;
 - Disinfection system operation;
 - Reticulation management;
 - Sampling, monitoring and analysis;
 - o Interpretation and recording of results; and,
- Maintenance of equipment.
- Incident and emergency response;
- Documentation;
- Record keeping; and,
- Reporting.

Commonly used training techniques and methods can be used including a combination of:

- Formal training courses accredited by a national training body;
- In-house training;
- On-the-job experience;
- Mentor programs;
- Workshops;
- Demonstrations; and,
- Seminars, courses and conferences.

Training programs should encourage employees to communicate and think critically about the operational aspects of their work.

Training will be documented, and records of all employees who have participated in training maintained. Mechanisms for evaluating the effectiveness of training will also be established and documented.

As training is an ongoing process, the requirements will be regularly reviewed to ensure that employees maintain the appropriate experience and qualifications. For those activities that have a significant impact on drinking water quality, periodic verification of the capability of operations staff is necessary.

It is an expectation of the Council and the Manager of Water and Waste that this plan is understood and implemented by relevant staff.

7.3 Specific Water Employee Training

Water treatment operators are essential to ensure the safe operation of water treatment plants, and in implementing the actions identified in this plan.

To engage operators, much of the development of these plans was done in conjunction with the relevant stakeholders to encourage ownership.

8. Community Involvement and Awareness

8.1 Community Consultation

To assist in ensuring the raw water sources are managed as best as possible, and to enable community feedback for water supplied (whether it be potable or non-potable) the community must be informed.

There is currently general information on the protecting catchments on the council website. This goes a long way to protect the water source, however, it is intended that information is added for locations that have a potable water supply. This highlights an additional but important consideration to acting responsibly in a catchment. The data should provide information on:

- Description of how PASC manages water quality;
- Discussion of issues on drinking water quality, public health and risk assessment, cost of treatment and levels of service;
- Details of the water supply system and the drinking water quality management system;
- Incident and emergency response plans, including procedures for notification when drinking water quality poses a health risk;
- Consumer responsibilities beyond the tap;
- The need for further treatment of water for special purposes (e.g. vulnerable persons); and,
- The role and responsibility of the community in protecting water supply catchments and water conservation.

8.2 Communication

Please refer to Section 5.3 and Section 6.1 for previous discussions on this topic.

9. Documentation and Reporting

9.1 Management of Documentation and Records

Primarily, PASC uses a system called Info Vision to manage documents and records. All documents in Info Vision are accessible by management, team members and other internal staff. A copy of the latest version and the relevant documents that apply to their work are available in hard copy, for example, on notice boards within the depot and plants. Records, procedures, this plan, monthly water reports, and the like, are saved into Info Vision where they receive a unique document number and are stored under a set filing structure. For example, there are other methods in which records are collected and stored. At the Water Treatment Plants, daily sheets are manually filled out to record operational parameters, and these are stored in hard copy at the WTP. WTP monthly and quarterly reports are provided to the Executive Manager Operations electronically and are captured in Info Vision.

Verification monitoring data is entered weekly into SWIMs. The Executive Manager Operations also report quarterly to Councillors on all water matters.

All records are kept in accordance with Public Records Act requirements.

PASC does have an informal water quality monitoring database, which provides a platform for storing water quality data when it is received from multiple laboratories. An upgrade to SWIMLocal now permits automatic generation of reports for specified periods and assess results with values from the Australian Drinking Water Guidelines.

Continuous online operational data is captured and stored by the SCADA system. The current system retains 12 months of data to allow operators to look at annual trends and archives all older data.

9.2 Process for Maintaining and Implementing Procedures

Several procedures are in place however we will look at working towards more procedures such as ;Main break repair, Reservoir inspection, chlorination, bore inspections, (update water sampling), incident reporting and emergency response. We are also working with QH to develop standard operating procedures. PASC has taken the position that all the procedures will require review in a quality assurance system. These will be reviewed periodically.

Operational Procedures and CCPs are primarily documented through this plan and are intended to be embedded within the SCADA system and quality controlled. Reporting processes are the responsibility of the Senior Plumber and signed off by the Executive Manager Operations.

9.3 Structural Review of Documentation

In addition to the previous statement, the procedure should include a 2-yearly review of this plan.

9.4 Reporting

The external DWQMP annual reports be used as the primary tool for reporting both internally and externally. Specific complaints or incidents may require reporting to the council at a monthly council meeting.

10. Evaluation and Audit

10.1 Long-Term Evaluation of Results

We will conduct an annual review of monitoring results over the preceding year will be undertaken as part of the annual report. The previous 3 years will be reviewed for long term evaluation as part of the DWQMP review cycle. This will ensure that:

- There is a process to assess overall performance against numerical guideline values, obligations or agreed levels of service;
- The business identifies emerging problems and trends; and,
- Priorities are determined for improving drinking water quality.

The interpretation of data sets may include a statistical evaluation of results and graphs or trend charts using a 'control chart' format.

Evaluation of results will be reported to the CEO.

10.2 Audit of Drinking Water Quality Management

10.2.1 Internal Audits

Auditing is the systematic evaluation of activities and processes to confirm that objectives are being met. It includes an assessment of the implementation and capability of management systems. Auditing provides valuable information on those aspects of the systems that are effective, as well as identifying opportunities for improvement. These audits will cover any aspect of drinking water management, and in particular the following:

- Implementation of CCPs and responses to exceedances;
- Progress against the Improvement Plan;
- Record keeping;
- Data collection and management, including reporting requirements.

10.2.2 Regulatory Audits

Under the plan approval, there is a regulatory requirement for an external audit. The frequency is currently every 4 years. We have recently had one in November, findings ard the actions we will take are found below:

ltem	Туре	Action	Status of Actions	Responsible Officer/Position
1.	Non- conform	Source a correct schematic from the contractor	Open-Following up with contractor	Senior plumber

2.	Non- conform ance	Review the CCP implementation	Open – processes to be reviewed and revised where applicable	Executive Manager Operations
3.	Non- conform ance	Review the monitoring and reporting procedures/plan	Open – processes to be reviewed and revised where applicable.	Executive Manager Operations
4.	Non- conform ance	Review the management of Incidents and Emergencies / Incident and emergency response protocols	Open – processes to be reviewed and revised where applicable.	Executive Manager Operations
5.	Non- conform	Review and revise record keeping procedures	Open – processes to be reviewed and revised	Executive Manager Operations
6.	Non- conform ance	Review and revise how we keep onto of key milestones even if key staff leave	Open – processes to be reviewed and revised.	Executive Manager Operations
7.	Non- conform ance	Review and Continual Improvement / Drinking water quality management improvement plan / RMIP Actions / Test for THMs	Open – processes to be reviewed and revised	Executive Manager Operations
8.	OFI	Review and revise our commitment to Drinking Water Quality / Regulatory and Formal Requirements	Open – develop training plans and review processes	Executive Manager Operations
9.	OFI	Re-assessment of the Drinking Water Supply System / Water supply system analysis / Scheme	Open – processes to be reviewed and revised	Executive Manager Operations
10.	OFI	Preventive Measures for Drinking Water Quality Management / Preventive measures and multiple barriers	Identify and Document the preventive measures and strategies into a plan addressing each significant risk and establish mechanisms for operational control.	Executive Manager Operations
11.	OFI	Operational Procedures and Process Control / Equipment capability and maintenance	Open – review and revise procedures as required	Executive Manager Operations
12.	OFI	Verification of Drinking Water Quality / Corrective action	Open – Establish and document procedures for corrective action in response to non-conformance or consumer feedback.	Executive Manager Operations
13.	OFI	Management of Incidents and Emergencies / Incident and emergency response protocols	Open – Train employees and regularly test emergency response plans.	Executive Manager Operations
14.	OFI	Employee Awareness and Training / Employee training	Open- Ensure the appropriate experience and qualifications are maintained and identify training needs .	Executive Manager Operations

15.	OFI	Community Involvement and Awareness / Communication	Open – Develop an active two-way communication program to inform consumers and promote awareness of drinking water quality issues	Executive Manager Operations
16.	OFI	Research and Development / Design of equipment	Open – we are talking to QH about several issues inc radionuclide testing and training. We are also reassessing the business case for additional filtration .	Executive Manager Operations
17.	OFI	Documentation and Reporting / Management of documentation and records	Establish aa records management system and ensure that employees are trained to fill out records. Periodically review documentation and revise as necessary	Executive Manager Operations
18.	OFL	Evaluation and Audit / Audit of drinking water quality management	Establish processes for internal audits	Executive Manager Operations
19.	OFI	Review and Continual Improvement / Drinking water quality management improvement plan / RMIP Actions / CMT1	Ensure that the plan is communicated and implemented, and that improvements are monitored for effectiveness Eg Was the action implemented within the timeframe state in the plan?	Executive Manager Operations

11. Review and Continual Improvement

11.1 Review by Senior Executive

The review of all information at an executive level is a necessary part of the ongoing commitment to drinking water quality. The following will be reported to and reviewed by management:

- Annual report;
- Reports from audits;
- Drinking water quality performance;
- Previous management reviews including concerns of consumers, regulators and other stakeholders;
- This plan's progress;
- Evaluation of the suitability of the drinking water quality policy, objectives and preventive strategies concerning changing internal and external conditions such as:
 - Change of expectations and obligations;
 - Changes in the activities of the organisation;
 - Advances in science and technology;

- o Outcomes of drinking water quality incidents and emergencies; and,
- Reporting and communication.

The review by senior executive should generally be undertaken against the 12 Elements during regular management meetings which should be minuted.

11.2 Drinking Water Quality Management Improvement Plan

The priorities have been set as detailed in Table 12.1 below.

Table 11.1 – Action Priority Ranking

Priority	Details	
2023	Urgent/ Highly Important	
2024	High priority/ Important	
2025	Medium Priority	
2026	Low Priority	
Ongoing	Re-occurring	

The drinking water quality improvement plan is provided in Appendix J – Drinking Water Quality Management Improvement Plan and it includes the risk management improvement actions from the hazard identification and risk assessment, plus those actions identified in the remainder of this document.

For those items with budgets attached to them, they will need to be negotiated, sought and granted.

12. References

1. Key performance indicators for annual performance reporting for Queensland urban water service providers, Definitions Guide, Version 2 (amended July 2020) Queensland Government. Section 6 contains the key areas to address.

2. Water Sector Cybersecurity Risk Management Guideline, American Water Works Association, 2019.

3. Queensland Audit Office - Security of Critical Water Infrastructure, 2017.

4. Water ISAC - 15 Cybersecurity Fundamental for Water and Wastewater Utilities, 2019.

5. Victorian Auditor-General's Office - Security of Water Infrastructure Control Systems, May 2019.

6. Report on the Assessment of the Pormpuraaw Aboriginal Shire Council Drinking Water Service, DEWS, 31 October 2017

Appendix A- Water Supply System Information

Water Supply Schematics

The schematic diagrams show below are taken from the SDADA screens. The first schematic is an overview of the water system, followed by details of the individual sites: Please note that we are waiting on updated schematics form our supplier to capture;

- Contact factor as the schematic isn't correct for the 0.5 tank
- Contact Factor as the SCADA system doesn't show acid dosing

Water Network Overview

Water Depot Schematic

Booster Pump Station Schematic

Bore Pump No 2 Schematic

Current Water Sources

Potable Water Source				
	Bore 1	Bore 2		
Located	1.0km North East of Community	1.5km North East of Community		
Bore ID	92960	92959		
Longitude/Latitude	14'54'00.17S 141'37'10.28E	14'54'13.29S 141'37'45.74E		
Aquifer	Sub – Artesian Deep Wyaaba Bed Hosted Aquifer	Sub – Artesian Deep Wyaaba Bed Hosted Aquifer		
% of Supply	100%	100%		
Reliability	Good	Good		
Pump Type	Grundfos Centrifugal 3 phase Submersible	Grundfos Centrifugal 3 phase Submersible		
Capacity Tested 7/08/2015	8.6 l/s pumped	12.6 l/s pumped		
Bore Depth metres	226.8 metres	76.2 metres		
Bore Pump Depth	40 metres	40 metres		
Bore Drilled	1973	1973		
Bore Head Details	Raised Head, Qld. Gov. Approved Design	Raised Head, Qld. Gov. Approved Design		
Bore Casing and Materials	200mm Cased PVC	200mm Cased PVC		
Water Quality Issues	High Levels of Calcium Total Hardness High	High Levels of Calcium Total Hardness High		

Bore 1 at Water Treatment Compound

Bore 2 at Remote Site

Non-Potable Water Source				
	Bore 3	Bore 4		
Located	Near Kindergarten	Near Kindergarten		
Bore ID	45010	45011		
Aquifer	Sub – ArtesianSub – ArtesianDeep Wyaaba Bed HostedDeep Wyaaba Bed HostedAquiferAquifer			
% of Supply	0% for Drinking Water. NOT Connected at this tim Used for Irrigation Purposes only NOT Connected at this tim			
Reliability	Untreated Water	Untreated Water		
Pump Type	Grundfos Centrifugal 3 phase Submersible	Grundfos Centrifugal 3 phase Submersible		
Capacity Tested 1975	7.0 l/s pumped	7.0 l/s pumped		
Bore Depth metres	75 metres	59 metres		
Bore Pump Depth	20 metres	20 metres		
Bore Drilled	1975	1975		
Bore Head Details	Raised Head,	Raised Head,		
Bore Casing and Materials	117mm Cased PVC	117mm Cased PVC		
Water Quality Issues	It is possible to connect to the community water supply, however, a boil water alert would be required as water would not be chlorinated	It is possible to connect to the community water supply, however, a boil water alert would be required as water would not be chlorinated		

Note: As there is no physical connection of bore 3 and 4 to the drinking water system. IT IS IMPOSSIBLE to accidentally have flow from these bores into the main water reticulation system.

To utilise water from these bores:

SPECIAL WRITTEN PERMISSION MUST BE OBTAINED TO CONNECT PIPEWORK.

Approval only from the Executive Manager Environment and the Chief Executive Manager can be given.

Treatment/Disinfection

Normal Operation

Source Water:

The Source water is from 2 bores, protected from potential surface water microbiological contamination. In addition, historical water quality also shows that having disinfection only is suitable as a protective measure against reticulation contamination.

A submersible pump is attached to each bore. The pump capacities are listed in the tables mentioned earlier. These were measured in August 2015.

No Bore in Pormpuraaw is free-flowing.

Sulphuric Acid Dosing:

This unit was installed and commissioned at the WTP in September 2020 and commissioned in November 2020. Appendix K – Acid Dosing System Details and Operations and Maintenance Procedures includes information on the pump and associated instrumentation assets, plus operational use, maintenance requirements and calibration procedures. The operator's "Daily Reading Sheet" includes the sulphuric acid unit daily checks required. This is provided in Appendix G – Operational Procedures and Monitoring.

Any spillage of Sulfuric Acid (50%), either from the IBC container, or the 300L 'day tank', would be entirely contained in a polyethylene storage bund that has at least 2000L capacity. For safety reasons, the acid is decanted daily from the IBC tank into the smaller day tank, where the dosing pump withdrawals the liquid from.

The unit was installed to address community concerns of hard water build-up and corrosion in public and private infrastructure including pipework, valving, hot water services etc., which may lead to ongoing maintenance and early replacement.

The bore water is typically delivered to the WTP at around pH 7.8. The sulfuric acid (50%) is used to make a small adjustment to the water to achieve a pH of approximately 7.4 (operational target). The lower pH enables calcium and other similar compounds to remain in solution.

The monitoring and dosing system is automatically controlled by an Allen Bradley PLC. A local screen displays real-time monitoring instrumentation and equipment operating status. Alarms are populated on the local SCADA screen.

Bore water pH fluctuates by only a small amount. The council operator is responsible for daily inspection of the dosing system and if required, adjusts the dose rate to ensure a downstream pH of <7.4. The system is set up with automatic (PLC controlled) shutdown of the dosing pump in the unlikely event overdosing occurs. If the downstream pH drops to 7.0 (critical limit), dosing stops immediately and a local alarm is generated.

The acid dose rate based on commissioning data is between 30 - 40 mL/min. This lowered the bore water pH from 7.8 to 7.3.

The acid dosing system is not connected to the wider Council SCADA network. This integration work will be completed at a later date.

In addition to controlling and minimising hard water accumulation in the Council's network, the lower pH improves chlorine disinfection effectiveness.

Chlorine Gas:

Due to the high degradation of Sodium Hypochlorite, it was decided in the community water upgrade to change from Sodium Hypochlorite to Chlorine Gas in the 70 Kg Cylinders. This occurred before the 2018 review of this plan.

The current disinfection stage is to inject chlorine gas via a vacuum system as the bore water enters into the 500Kl clear water storage tank. This provides an adequate holding period for the chlorine.

The initial chlorine dosage is controlled according to the flow rates into the clear water tank. As the chlorine is dosed on bore usage it is easily maintained during peak water usage times and also minimum usage times.

Chlorine is further added to the new 2.0ML storage tank via a recirculation system. The chlorine level in the reservoir is sampled via a chlorine analyser and automatically dosed to maintain the chlorine level to a programmable setpoint.

Bypassing the chlorination stage is extremely difficult to achieve either deliberately or by accident.

There are no locations within the entire reticulation system that does not undergo chlorination under the normal operating layout.

Initial Flow-Paced Treatment			
Location	Chlorine injection unit, after bores, before entering clear water tank.		
Type Chlorine gas 70 Kg cylinders.			
Dose Rate	 Chlorine gas volume 59.66%; 		
	 Chlorine gas control valve 3.24%. 		
Target Free Cl2 Chlorination at dosing point 2.4mg/L – 2.6mg/L			
Duty/Standby	Cylinders in usage with automatic change over.		
Dosing Arrangement	Flow-based on bore use (e.g. bore 2 turns on so does Chlorination.		
Alarms	Chlorine Leak Detection;		
	High Volume;		
	Low Volume.		
	Alarms all active through SCADA and phone text messaging.		
Chemical Added, Storage and Turnover	Chlorine gas 70kg cylinders stored in shed compliant with Australian Standards for storage of chlorine cylinders.		

Chlorine Gas System

Chlorine Gas Room

Chlorine Gas Spare Cylinders

Chlorine Gas Injection Point

Secondary Automatic Chlorine Trimming System			
Location	Chlorine Injection unit, on recirculation line in 2MK reservoir.		
Туре	Chlorine Gas 70 Kg Cylinders (shared).		
Dose Rate	Automatically controlled		
Target Free Cl2	Adjustable - currently set to 0.8mg/L		
Duty/Standby	Cylinders in usage with automatic change over (shared).		
Dosing Arrangement	Automatically controlled via chlorine analyser and motorised flow control.		
Alarms	Chlorine Leak Detection (shared), High and low Vacuum, low and high chlorine level, Alarms all active through SCADA and Phone Text Messaging.		
Chemical Added, Storage and Turnover	Chlorine Gas 70kg Cylinders stored in shed compliant with Australian Standards for storage of chlorine cylinders (shared).		

Chlorine trimming system

Abnormal Operation

THE ONLY EXCEPTION, which has never been implemented, is if the water from bores #3 and #4 were to be connected and allowed to enter the community drinking water supply. If this was permitted a BOIL WATER ALERT would be required as water from bores #3 and #4 bypasses all chlorination.

Name	Clear Water Storage Reservoir	Elevated Water Storage Reservoir	New Water Storage Reservoir
Capacity	500 Kilolitres	2 X 120 Kilolitres	2 ML
Туре	Concrete	Plastic Lined Steel	Concrete
Roof	Fully Sealed	Roofing Iron & Steel	Concrete
Vermin Proof	Yes	Yes	Yes
Runoff from Roof	Sloping Roof Directs Runoff to Ground, then out to swamp at rear	Sloping Roof Directs Runoff to Ground,	Sloping Roof Directs Runoff to Ground, then out to swamp at rear
Cleaning Schedule	No Indication of Sedimentation, Annual Check Completed May 2015	No Indication of Sedimentation, Annual Check Completed May 2015	New tank with no sedimentation.
Inspection Schedule	Daily Reading and operational monitoring and inspections, Recorded on daily Work Schedule	Daily Reading and operational monitoring and inspections, Physical Inspection of float level indicators completed daily	Daily Reading and operational monitoring and inspections, Recorded on daily Work Schedule

Storage

2 Elevated Water Tanks (Chlorinated)(2 x 120KL)

\Main Clear Water Reservoir (Chlorinated) (1 x 500KL)

New 2 ML Concrete Water Reservoir

Distribution and Reticulation

 The following table shows the distribution and reticulation details.

 Pump Capacity
 Initially 150 kPa Approximately 19 L/s to the 15metre Elevated Water

 Storage Tanks. Elevated Water Storage Tanks Feed a 4 Stage

 Grundfos System Boosting Water Pressure to Community from

 150kPa to 250kPa

Duty / Standby	Both high lift pumps and booster pumps rotate through an automatic change over and have an automatic Diesel Generator Back up system
Pipe Materials	UPVC – All Asbestos has been removed from reticulation
Age Range	No More than 5 years
Lengths of Mains	Approximately 35 Kilometres
Issues with Long Detention & Dead Ends	Most dead ends have been Eliminated. Where there is still a dead-end regular water flushing undertaken.
High-Pressure Issues	Not applicable
Low-Pressure Issues	Any Issues with low pressure are investigated as it is usually a blockage
No. of Pump Stations	Bore 1 and Bore 2 only used for reticulation system
Flushing	As required or once a month.

Hi-Lift Pumps

Grundfos Booster Pumps

Flushing Water Mains

Appendix B: Water Quality Analysis

Water Quality Results 21-22

			Bore 1					Gui	deline Val	ues	
									Aest	hetic	compliance
Parameter	Units	MIN	5th percentile	AVE	95th percentile	мах	COUNT	Health	Lower	Upper	
Calcium	mg/L	43	43	43	44	44	12				100%
Chloride	mg/L	150	153	173	190	200	12			250	100%
E coli	CFU/100mL	1	2	7	9	10	12	1		10	100%
Electrical Conductance	μS/cm	990	996	1063	1095	1100	12			1500	100%
Fluoride	mg/L	0.63	0.63		0.68	0.68	12	1.5			100%
ICPMS Aluminium	mg/L	0.2	0.2	0.2	0.2	0.2	12			0.2	100%
ICPMS Arsenic	mg/L	0	0	0	0	0	12	0.01			100%
ICPMS Cadmium	mg/L	0	0	0	0	0	12	0.002			100%
ICPMS Copper	mg/L	0	0	0	0	0	12	2		1	100%
ICPMS Iron	mg/L	0.05	0.05	0.05	0.05	0.05	12			0.3	100%
ICPMS Lead	mg/L	0	0	0	0	0	12	0.01			100%
ICPMS Manganese	mg/L	0	0	0	0	0	12	0.05		0.1	100%
ICPOES Silicon	mg/ L SiO2	28	28	29	30	30	12			80	100%
Magnesium	mg/L	30	30	30.3	30.9	31	12				100%
pH @ 25 deg C		7.3	7.3	7.4	7.4	7.4	12		6.5	8	100%
Potassium	mg/L	7.2	7.2	7.4	7.8	7.8	12				100%
Sodium	mg/L	110	112	123.3	138	140	12			180	100%
Sulphate	mg/L	11	11	12.3	13	13	12	500		250	100%

Pormpuraaw Aboriginal Shire Council DWQMP – Amended 2022

Total Alkalinity	mg CaCO3 / L	270	271	273.	3 27	9	280	12	2		60	20	00	0%
Total Dissolved Solids	mg/L	520	524	563.	3 60	7	610	12	2			60	00	67%
Total Hardness	mg CaCO3 / L	230	231	233.	3 23	9	240	12	2			20	00	0%
Turbidity	NTU	0.2	0.2	0.2	0.	3	0.3	12	2			Ę	5	100%
		Bor	e 2				1		Gu	ideline '	Values			
	Units	MIN	0.05	AVE	0.95	МАХ	COUN	ІТ	Health	Lowe	esthetic r Up	per	C	ompliance
Calcium	mg/L	43	43.1	44	44.9	45	12							100%
Chloride	mg/L	150	151	153	160	160	12				2	50		100%
E coli	CFU/100mL	1	1.5	7	9.6	10	12		1		1	0		100%
Electrical Conductance	μS/cm	960	962	977	989	990	12				15	00		100%
Fluoride	mg/L	0.62	0.62	0.64	0.66	0.66	12		1.5					100%
ICPMS Aluminium	mg/L	0.02	0.02	0.02	0.02	0.02	12				0	.2		100%
ICPMS Arsenic	mg/L	0	0	0	0	0	12		0.01					100%
ICPMS Cadmium	mg/L	0	0	0	0	0	12		0.002					100%
ICPMS Copper	mg/L	0	0	0	0	0	12		2			1		100%
ICPMS Iron	mg/L	0.07	0.07	0.07	0.08	0.08	12				0	.3		100%

Pormpuraaw Aboriginal Shire Council DWQMP – Amended 2022

ICPMS Lead	mg/L	0	0	0	0	0	12	0.01			100%
ICPMS Manganese	mg/L	0	0	0.01	0	0	12	0.05		0.1	100%
ICPOES Silicon	mg/ L SiO2	28	28.1	28.3	29.0	29	12			80	100%
Magnesium	mg/L	30	30.1	30.7	31.0	31	12				100%
pH @ 25 deg C		7.3	7.3	7.4	7.4	7.4	12		6.5	8	100%
Potassium	mg/L	6.6	6.6	7.0	7.3	7.3	12				100%
Sodium	mg/L	110	110	110.0	110	110	12			180	100%
Sulphate	mg/L	11	11.05	11.3	11.95	12	12	500		250	100%
Total Alkalinity	mg CaCO3 / L	260	260.5	266.7	269.5	270	12		60	200	0%
Total Dissolved Solids	mg/L	520	520.5	523.3	529.5	530	12			600	100%
Total Hardness	mg CaCO3 / L	230	230.5	236.7	239.5	240	12			200	0%
Turbidity	NTU	0.3	0.305	0.3	0.395	0.4	12			5	100%

	Chlorine	PH Level						Chlor	ine						Rainfall
Day	Analyser Display Reading	Analyser Display Reading PH	T/P 1	T/P 2	T/P 3	T/P 4	T/P 5	T/P 6	Т/Р 7	T/P 8	Т/Р 9	T/P 10	T/P 11	T/P 12	T/P 1
min	0.93	7.79	0.89	1.0	0.97	0.96	0.93	0.95	0.93	0.98	0.94	0.92	0.94	0.9	0.0
max	0.52	6.92	0.46	0.42	0.51	0.45	0.0	0.39	0.42	0.2	0.4	0.37	0.39	0.4	0.0
ave	0.8	7.21	0.72	0.75	0.77	0.77	0.73	0.78	0.74	0.75	0.74	0.75	0.75	0.7	0.0
01/07/2021	0.83	7.31	0.86	0.91	0.85	0.94	0.83	0.82	0.8	0.81	0.81	0.8	0.83	0.73	0.0
02/07/2021	0.83	7.3		0.92	0.9	0.7	0.83	0.78	0.88	0.89	0.92	0.77	0.93	0.75	
05/07/2021	0.79	7.33	0.86	0.88	0.87	0.92	0.0	0.91	0.88	0.89	0.94	0.88	0.87	0.84	0.0
06/07/2021	0.78	7.35	0.89	0.9	0.95	0.88	0.89	0.93	0.88	0.89	0.89	0.88	0.87	0.88	0.0
07/07/2021	0.69	7.34	0.81	0.7	0.71	0.83	0.89	0.85	0.86	0.82	0.78	0.81	0.81	0.8	0.0
08/07/2021	0.78	7.33	0.85	0.86	0.97	0.91	0.78	0.91	0.91	0.84	0.81	0.76	0.83	0.74	0.0
09/07/2021	0.85	7.33	0.76	0.89	0.9	0.93	0.79	0.92	0.74	0.9	0.77	0.84	0.86	0.76	0.0
10/07/2021	0.85	7.33													
12/07/2021	0.8	7.33	0.85	0.92	0.79	0.91	0.93	0.95	0.85	0.85	0.9	0.89	0.9	0.85	0.0
13/07/2021	0.82	7.33	0.87	0.83		0.78	0.76	0.74	0.71	0.79	0.76	0.74	0.77	0.7	0.0
14/07/2021	0.82	7.3	0.69	0.76	0.77	0.78	0.79	0.73	0.74	0.71	0.76	0.76	0.73	0.73	0.0
15/07/2021	0.87	7.26	0.85	0.7	0.73	0.8	0.81	0.87	0.8	0.72	0.73	0.71	0.71	0.69	0.0
16/07/2021	0.84	7.25	0.69	0.71	0.75	0.71	0.75	0.71	0.75	0.73	0.74	0.75	0.73	0.7	0.0
17/07/2021	0.79	7.22											0.39		
19/07/2021	0.79	7.22	0.48	0.47	0.54	0.45	0.48	0.39	0.45	0.4	0.46	0.37	0.39	0.45	0.0
20/07/2021	0.79	7.21	0.56	0.9	0.61	0.68	0.55	0.62	0.44	0.35	0.5	0.5	0.56	0.47	0.0
21/07/2021	0.85	7.23	0.59	0.64	0.63	0.9	0.51	0.64	0.81	0.65	0.44	0.51	0.41	0.61	0.0
22/07/2021	0.76	7.25	0.65	0.62	0.62	0.58	0.57	0.65	0.59	0.6	0.44	0.51	0.65	0.64	0.0

Daily Results

23/07/2021				0.42											
26/07/2021	0.76	7.23	0.48	0.42	0.51	0.93	0.51	0.61	0.45	0.46	0.4	0.42	0.4	0.51	0.0
27/07/2021	0.75	7.24	0.65	0.75	0.75	0.74	0.42	0.76	0.74	0.75	0.74	0.74	0.54	0.68	0.0
28/07/2021	0.82	7.26	0.8	0.64	0.83	0.89	0.47	0.87	0.69	0.65	0.64	0.67	0.8	0.63	0.0
29/07/2021	0.82	7.3	0.82	0.83	0.94	0.85	0.67	0.82	0.89	0.82	0.83	0.8	0.81	0.82	0.0
30/07/2021	0.75	7.31	0.46	1.0	0.76	0.83	0.76	0.76	0.73	0.44	0.8	0.78	0.77	0.73	0.0
03/08/2021	0.73	7.37	0.67	0.87	0.69	0.69	0.77	0.69	0.74	0.74	0.87	0.75	0.75	0.83	0.0
04/08/2021	0.82	7.38	0.57	0.82	0.72	0.75	0.93	0.5	0.74	0.71	0.46	0.72	0.69	0.69	0.0
05/08/2021	0.84	7.38	0.74	0.78	0.82	0.79	0.6	0.79	0.77	0.79	0.8	0.7	0.72	0.68	0.0
06/08/2021			0.69												0.0
09/08/2021	0.79	7.79		0.61	0.62	0.61		0.59	0.58	0.58	0.63	0.61	0.61	0.58	
10/08/2021	0.79	7.27		0.55	0.81	0.78		0.69	0.42	0.75	0.7	0.7		0.62	
12/08/2021					0.81	0.96			0.75		0.75	0.69			
13/08/2021	0.79	7.26	0.75	0.75	0.72	0.75	0.76	0.71	0.77	0.67	0.73	0.67	0.77	0.65	0.0
16/08/2021	0.76	7.29	0.51	0.81		0.52	0.92	0.62	0.7	0.62	0.75	0.74	0.79	0.69	0.0
17/08/2021	0.77	7.3	0.63	0.82	0.8	0.84	0.84	0.93	0.83	0.69	0.72	0.71	0.94	0.88	0.0
18/08/2021	0.82	7.31	0.7	0.67	0.74	0.74	0.72	0.62	0.85	0.73	0.72	0.6	0.69	0.8	0.0
19/08/2021	0.84	7.31	0.84	0.81	0.95	0.83	0.77	0.85	0.79	0.82	0.83	0.92	0.83	0.79	0.0
20/08/2021	0.84	7.32	0.68	0.74	0.66	0.78	0.71	0.72	0.63	0.65	0.61	0.71	0.7	0.7	0.0
23/08/2021				0.75											
25/08/2021	0.78	7.27	0.8	0.75		0.67	0.62	0.84	0.72	0.71	0.75	0.68	0.67	0.68	0.0
26/08/2021	0.82	7.31	0.61	0.64		0.59	0.61	0.61	0.64	0.58	0.61	0.65	0.6	0.58	0.0
27/08/2021	0.82	7.31	0.65	0.64		0.67	0.58	0.69	0.74	0.77	0.67	0.65	0.59	0.6	0.0
31/08/2021	0.82	7.31	0.6	0.56	0.88	0.77	0.71	0.63	0.61	0.59	0.66	0.68	0.65	0.6	0.0
01/09/2021	0.79	7.31	0.59	0.65	0.81	0.61	0.68	0.55	0.7	0.77	0.68	0.65	0.63	0.62	
06/09/2021	0.79	7.33	0.5	0.6	0.63	0.64	0.62	0.57	0.68	0.64	0.66	0.6	0.72	0.65	
10/09/2021	0.81	7.31	0.69	0.73	0.84	0.66	0.75	0.69	0.68	0.8	0.75	0.76	0.78	0.66	
13/09/2021	0.79	7.31	0.63	0.7		0.6	0.64	0.52	0.78	0.78	0.69	0.7	0.74	0.5	
14/09/2021	0.81	7.31				0.82	0.75	0.79							

Page 28 of 101

16/09/2021	0.81	7.31	0.67	0.78	0.81	0.69	0.78	0.81	0.74	0.75	0.77	0.73	0.74	0.68	
20/09/2021			0.69	0.92	0.67	0.91	0.67	0.84	0.65	0.98	0.71	0.63	0.84	0.76	
21/09/2021	0.79	7.31	0.63			0.64		0.72		0.77				0.56	
23/09/2021	0.84	7.33	0.76	0.75	0.79	0.84	0.76	0.84	0.75	0.77	0.74	0.77	0.76	0.71	
24/09/2021	0.83	7.33	0.81	0.89	0.77	0.84	0.76	0.83	0.79	0.76	0.79	0.74	0.75	0.77	
27/09/2021	0.81	7.31	0.67	0.65	0.67	0.63	0.67	0.65	0.64	0.65	0.62	0.55	0.64	0.52	
28/09/2021	0.81	7.31	0.58	0.61	0.64	0.57	0.62	0.62	0.62	0.63	0.6	0.6	0.59	0.48	
29/09/2021	0.82	7.31	0.66	0.5	0.68	0.61	0.64	0.66	0.62	0.64	0.61	0.57	0.63	0.6	
30/09/2021	0.8	7.31	0.56	0.57	0.65	0.64	0.61	0.62	0.58	0.6	0.58	0.55	0.55	0.45	
01/10/2021	0.82	7.31	0.62	0.64	0.66	0.64	0.58	0.61	0.59	0.6	0.72	0.56	0.56	0.54	
05/10/2021	0.82	7.31	0.63	0.46	0.63	0.68	0.58	0.63	0.46	0.55	0.67	0.59	0.45	0.43	
06/10/2021	0.81	7.32	0.8	0.77	0.74	0.81	0.7	0.8	0.77	0.74	0.76	0.86	0.754	0.72	
07/10/2021	0.76	7.31	0.74	0.73	0.76	0.75	0.74	0.72	0.74	0.73	0.71	0.74	0.72	0.68	
08/10/2021	0.76	7.31	0.71	0.75	0.78	0.73	0.74	0.71	0.74	0.73	0.78	0.74	0.77	0.65	
11/10/2021	0.81	7.31	0.67	0.76	0.71	0.76	0.71	0.76	0.72	0.72	0.72	0.73	0.72	0.66	
12/10/2021	0.81	7.31	0.73	0.6	0.58	0.72	0.69	0.73	0.68	0.71	0.47	0.65	0.66	0.66	
13/10/2021	0.79	7.32	0.71	0.73	0.68	0.79	0.82	0.73	0.72	0.71	0.72	0.7	0.68	0.67	
14/10/2021	0.79	7.33	0.57	0.71	0.76	0.66	0.68	0.68	0.65	0.71	0.69	0.65	0.7	0.64	
15/10/2021	0.79	7.33	0.66	0.7	0.72	0.72	0.71	0.7	0.69	0.68	0.72	0.7	0.68	0.63	
18/10/2021	0.76	7.31	0.81		0.71	0.66	0.65	0.81	0.72	0.73	0.65	0.68	0.72	0.59	
19/10/2021	0.81	7.31	0.62	0.7	0.71	0.69	0.7	0.81	0.72	0.7	0.71	0.69	0.72	0.63	
20/10/2021	0.79	7.31	0.62	0.7	0.72	0.75	0.71	0.69	0.72	0.71	0.68	0.74	0.7	0.68	
21/10/2021	0.81	7.31	0.68	0.66	0.77	0.71	0.7	0.75	0.73	0.73	0.74	0.7	0.78	0.45	
22/10/2021	0.79	7.13	0.67	0.7	0.72	0.74	0.75	0.72	0.7	0.7	0.66	0.7	0.71	0.52	
25/10/2021	0.81	7.22	0.69	0.68	0.7	0.75	0.72	0.75	0.71	0.66	0.64	0.7	0.69	0.63	
26/10/2021	0.81	7.21	0.62	0.64	0.67	0.76	0.69	0.68	0.71	0.7	0.65	0.7	0.69	0.64	
27/10/2021	0.81	7.2	0.63	0.69	0.72	0.71	0.73	0.74	0.71	0.68	0.69	0.73	0.62	0.44	
28/10/2021	0.8	7.19	0.63	0.72	0.64	0.76	0.68	0.74	0.68	0.68	0.67	0.68	0.59	0.67	
29/10/2021	0.79	7.17	0.6	0.57	0.68	0.63	0.68	0.76	0.67	0.68	0.63	0.64	0.61	0.69	

Page 29 of 101

01/11/2021	0.81	7.15	0.67	0.6	0.67	0.61	0.62	0.73	0.63	0.66	0.67	0.66	0.68	0.63	
02/11/2021			0.64	0.68	0.65	0.62	0.62	0.61	0.69	0.63	0.68	0.67	0.65	0.59	
03/11/2021	0.77	7.14	0.71	0.88	0.84	0.73	0.7	0.8	0.9	0.83	0.73	0.81	0.85	0.63	
04/11/2021	0.74	7.19	0.75	0.87	0.87	0.82	0.83	0.78	0.89	0.86	0.88	0.87	0.86	0.83	
05/11/2021	0.82	7.24	0.76	0.87	0.78	0.89	0.83	0.9	0.89	0.88	0.85	0.86	0.88	0.77	
08/11/2021	0.81	7.29	0.85	0.85	0.88	0.89	0.86	0.9	0.83	0.91	0.85	0.85	0.87	0.77	
09/11/2021	0.81	7.17	0.81	0.86	0.89	0.86		0.88	0.93	0.77	0.89	0.86	0.87	0.61	
10/11/2021	0.8	7.1	0.73	0.8	0.82	0.75	0.78	0.77	0.8	0.79	0.75	0.77	0.79	0.64	
11/11/2021	0.84	7.05	0.74	0.76	0.78	0.78	0.76	0.77	0.74	0.8	0.75	0.84	0.79	0.75	
12/11/2021	0.83	7.05	0.66	0.75	0.76	0.79	0.67	0.78	0.78	0.72	0.73	0.75	0.75	0.65	
15/11/2021	0.81	7.26	0.77	0.8	0.78	0.81	0.76	0.82	0.84	0.8	0.8	0.81	0.82	0.9	
16/11/2021	0.79	7.28	0.64	0.78	0.78	0.8	0.8	0.76	0.74	0.74	0.74	0.78	0.77	0.71	
17/11/2021	0.83	7.3	0.77	0.81	0.8	0.75	0.76	0.8	0.8	0.81	0.72	0.77	0.77	0.61	
18/11/2021	0.8	7.31	0.76	0.77	0.79	0.77	0.79	0.78	0.79	0.79	0.78	0.79	0.81	0.68	
19/11/2021	0.74	7.31	0.72	0.73	0.77	0.73	0.73	0.73	0.74	0.76	0.7	0.79	0.75	0.7	
22/11/2021	0.82	7.3	0.73	0.77	0.79	0.77	0.77	0.82	0.77	0.79	0.75	0.74	0.75	0.75	
23/11/2021	0.8	7.3	0.75	0.74	0.81	0.78	0.78	0.77	0.81	0.8	0.79	0.79	0.82	0.66	
24/11/2021	0.81	7.29	0.71	0.79	0.75	0.82	0.77	0.84	0.73	0.84	0.74	0.76	0.79	0.73	
25/11/2021	0.79	7.28	0.71	0.77	0.81	0.77	0.76	0.82	0.81	0.8	0.77	0.79	0.79	0.63	
26/11/2021	0.79	7.3	0.65	0.77	0.74	0.77	0.79	0.76	0.75	0.78		0.78	0.78	0.6	
29/11/2021	0.78	7.32	0.76	0.78	0.72	0.75	0.71	0.8	0.76	0.76	0.76	0.76	0.75	0.53	
30/11/2021	0.79	7.32	0.7	0.8	0.83	0.81	0.7	0.82	0.78	0.76	0.74	0.75	0.76	0.67	
01/12/2021	0.81	7.33	0.64	0.78	0.78	0.79	0.8	0.8	0.8	0.7	0.78	0.71	0.77	0.7	
02/12/2021	0.8	7.33	0.7	0.75	0.75	0.82	0.7	0.77	0.77	0.76	0.76	0.75	0.76	0.72	
03/12/2021	0.78	7.33	0.62	0.72	0.67	0.77	0.77	0.79	0.76	0.74		0.77	0.7	0.61	
06/12/2021	0.81	7.33	0.73	0.74	0.79	0.76	0.82	0.81	0.79	0.75	0.82	0.74	0.74	0.7	
07/12/2021	0.81	7.26	0.71	0.78	0.8	0.72	0.83	0.81	0.67	0.77	0.78	0.77	0.79	0.69	
08/12/2021	0.78	7.16	0.69	0.75	0.74	0.71	0.69	0.76	0.74	0.72	0.76	0.73	0.76	0.46	
09/12/2021	0.83	7.13	0.69	0.75	0.78	0.77	0.74	0.81	0.75	0.79	0.7	0.75	0.76	0.4	

Page 30 of 101

10/12/2021	0.83	7.12	0.52	0.65	0.75	0.79	0.7	0.8	0.78	0.64	0.66	0.7	0.75	0.67	
13/12/2021	0.78	7.09	0.67	0.72	0.73	0.72	0.71	0.74	0.73	0.72	0.72	0.75	0.71	0.57	
14/12/2021	0.8	7.09	0.73	0.76	0.76	0.75	0.67	0.82	0.72	0.75	0.7	0.75	0.74	0.64	
15/12/2021	0.83	7.1	0.77	0.71	0.85	0.77	0.61	0.78	0.75	0.77	0.76	0.75	0.75	0.52	
16/12/2021	0.78	7.13	0.73	0.72	0.78	0.8	0.71	0.82	0.76	0.73	0.75	0.76	0.77	0.68	
17/12/2021	0.8	7.14	0.65	0.71	0.77	0.73	0.74	0.8	0.69	0.65	0.63	0.77	0.72	0.66	
20/12/2021	0.81	7.14	0.71	0.77	0.75	0.75	0.61	0.82	0.77	0.75	0.75	0.76	0.78	0.7	
21/12/2021	0.84	7.15	0.64	0.75	0.75	0.75	0.75	0.81	0.76	0.75	0.66	0.72	0.73	0.62	
22/12/2021	0.8	7.15	0.56	0.75	0.74	0.77	0.77	0.74	0.69	0.72	0.71	0.73	0.7	0.69	
23/12/2021	0.8	7.14	0.69	0.69	0.68	0.74	0.65	0.77	0.72	0.72	0.76	0.73	0.68	0.64	
24/12/2021	0.81	7.14	0.64	0.71	0.71	0.72	0.65	0.77	0.68	0.73	0.68	0.68	0.7	0.59	
27/12/2021	0.81	7.16	0.64	0.74	0.78	0.77	0.69	0.77	0.72	0.73	0.76	0.66	0.77	0.81	
28/12/2021	0.76	7.18	0.72	0.72	0.78	0.72	0.71	0.72	0.72	0.77	0.86	0.72	0.74	0.72	
29/12/2021	0.83	7.18	0.68	0.74	0.75	0.75	0.81	0.76	0.66	0.67	0.69	0.73	0.76	0.54	
30/12/2021	0.79	7.2	0.65	0.71	0.75	0.76	0.71	0.75	0.72	0.74	0.7	0.77	0.75	0.72	
31/12/2021	0.83	7.19	0.68	0.7	0.78	0.81	0.72	0.8	0.72	0.7	0.67	0.78	0.74	0.72	
03/01/2022	0.86	7.16	0.63	0.78	0.78	0.78	0.71	0.8	0.76	0.7	0.73	0.78	0.75	0.52	
04/01/2022	0.78	7.17	0.7	0.75	0.68	0.69	0.84	0.7	0.74	0.54	0.72	0.7	0.7	0.86	
05/01/2022	0.8	7.18	0.67	0.69	0.69	0.71	0.66	0.84	0.64	0.66	0.68	0.72	0.71	0.67	
06/01/2022	0.75	7.19	0.68	0.7	0.7	0.67	0.72	0.74	0.65	0.77	0.64	0.78	0.7	0.67	
07/01/2022	0.81	7.2	0.69	0.76	0.77	0.72	0.7	0.72	0.66	0.75	0.71	0.72	0.75	0.69	
10/01/2022	0.81	7.2	0.69	0.74	0.75	0.75	0.67	0.77	0.68	0.72	0.73	0.7	0.71	0.68	
11/01/2022	0.81	7.2	0.72	0.73	0.67	0.75	0.77	0.76	0.66	0.76	0.67	0.7	0.76	0.72	
12/01/2022	0.8	7.21	0.69	0.73	0.8	0.75	0.71	0.77	0.69	0.73	0.75	0.78	0.75	0.7	
13/01/2022	0.78	7.22	0.7	0.73	0.72	0.74	0.72	0.8	0.66	0.64	0.77	0.75	0.74	0.69	
14/01/2022	0.81	7.21	0.53	0.71	0.72	0.75	0.69	0.76	0.67	0.69	0.71	0.65	0.7	0.67	
17/01/2022	0.81	7.24	0.73	0.77	0.95	0.82	0.71	0.76	0.68	0.73	0.73	0.79	0.79	0.72	
18/01/2022	0.81	7.24	0.72	0.74	0.73	0.76	0.63	0.77	0.7	0.65	0.7	0.73	0.75	0.75	
19/01/2022	0.79	7.22	0.67	0.71	0.69	0.75	0.64	0.75	0.68	0.71	0.65	0.77	0.74	0.69	

Page 31 of 101

20/01/2022	0.8	7.22	0.59	0.65	0.75	0.76	0.65	0.8	0.72	0.68	0.76	0.7	0.73	0.66	
21/01/2022	0.81	7.24	0.7	0.74	0.72	0.75	0.73	0.79	0.72	0.71	0.63	0.75	0.75	0.71	
24/01/2022	0.81	7.24	0.61	0.67	0.71	0.75	0.73	0.79	0.72	0.71	0.73	0.73	0.68	0.69	
25/01/2022	0.78	7.24	0.65	0.67	0.69	0.73	0.74	0.73	0.65	0.68	0.72	0.72	0.72	0.65	
26/01/2022	0.8	7.25	0.59	0.66	0.72	0.75	0.69	0.76	0.6	0.72	0.7	0.67	0.66	0.6	
27/01/2022	0.81	7.26	0.64	0.68	0.7	0.73	0.71	0.76	0.68	0.63	0.72	0.68	0.52	0.75	
28/01/2022	0.79	7.27	0.61	0.67	0.7	0.75	0.72	0.75	0.65	0.68	0.69	0.72	0.67	0.73	
31/01/2022	0.81	7.29	0.65	0.71	0.67	0.72	0.68	0.74	0.7	0.69	0.53	0.68	0.71	0.6	
01/02/2022	0.81	7.28	0.69	0.66	0.66	0.71	0.71	0.68	0.65	0.67	0.55	0.66	0.7	0.62	
02/02/2022	0.78	7.27	0.66	0.66	0.64	0.63	0.63	0.67	0.66	0.63	0.67	0.67	0.66	0.62	
03/02/2022	0.8	7.27	0.56	0.79	0.71	0.74	0.7	0.74	0.62	0.69	0.71	0.65	0.72	0.79	
04/02/2022	0.77	7.29	0.79	0.86	0.72	0.75	0.74	0.79	0.76	0.75	0.76	0.8	0.78	0.54	
07/02/2022	0.83	7.3	0.68	0.77	0.74	0.81	0.79	0.8	0.78	0.74	0.78	0.8	0.78	0.66	
08/02/2022	0.76	7.29	0.79	0.78	0.75	0.72	0.71	0.72	0.72	0.73	0.72	0.74	0.75	0.73	
09/02/2022	0.83	7.27	0.72	0.76	0.76	0.78	0.72	0.78	0.69	0.72	0.72	0.75	0.72	0.65	
10/02/2022	0.81	7.25	0.78	0.75	0.75	0.75	0.51	0.79	0.69	0.75	0.75	0.77	0.75	0.72	
11/02/2022	0.76	7.24	0.74	0.76	0.79	0.78	0.72	0.74	0.76	0.76	0.76	0.78	0.76	0.7	
14/02/2022	0.77	7.25	0.76	0.74	0.57	0.8	0.76	0.79	0.74	0.74	0.74	0.75	0.78	0.75	
15/02/2022	0.81	7.25	0.75	0.77	0.76	0.81	0.76	0.83	0.78	0.79	0.79	0.77	0.56	0.57	
16/02/2022	0.82	7.24	0.73	0.81	0.8	0.84	0.63	0.81	0.72	0.81	0.81	0.79	0.79	0.77	
17/02/2022	0.77	7.22	0.74	0.71	0.78	0.79	0.68	0.77	0.76	0.77	0.77	0.79	0.78	0.7	
18/02/2022	0.78	7.21	0.71	0.73	0.7	0.79	0.66	0.74	0.81	0.79	0.69	0.77	0.8	0.78	
21/02/2022	0.77	7.22	0.75	0.77	0.81	0.75	0.69	0.79	0.69	0.83	0.7	0.8	0.78	0.53	
22/02/2022	0.8	7.2	0.77	0.81	0.79	0.81	0.76	0.86	0.75	0.82	0.81	0.82	0.79	0.73	
23/02/2022	0.8	7.2	0.78	0.82	0.83	0.81	0.78	0.81	0.71	0.82	0.81	0.75	0.79	0.75	
24/02/2022	0.76	7.2	0.77	0.8	0.86	0.8	0.74	0.76	0.79	0.81	0.74	0.8	0.81	0.7	
25/02/2022	0.8	7.22	0.76	0.83	0.77	0.84	0.8	0.82	0.67	0.81	0.77	0.81	0.78	0.79	
28/02/2022	0.8	7.21	0.68	0.76	0.85	0.81	0.73	0.8	0.79	0.82	0.79	0.85	0.85	0.75	
01/03/2022	0.81	7.2	0.79	0.58	0.84	0.83	0.76	0.84	0.75	0.86	0.85	0.78	0.87	0.78	

Page 32 of 101

02/03/2022	0.81	7.2	0.87	0.82	0.78	0.82	0.76	0.81	0.77	0.79	0.88	0.87	0.84	0.77	
03/03/2022	0.65	7.22	0.63	0.69	0.76	0.66	0.84	0.7	0.76	0.79	0.8	0.78	0.8	0.69	
04/03/2022	0.52	7.22	0.64	0.7	0.74	0.63	0.73	0.64	0.76	0.72	0.73	0.75	0.74	0.73	
07/03/2022	0.93	7.2	0.67	0.88	0.86	0.81		0.94	0.76	0.85	0.86	0.9	0.89	0.77	
08/03/2022	0.81	7.19	0.81	0.87	0.87	0.95	0.75	0.9	0.82	0.74	0.85	0.83	0.73	0.76	
09/03/2022	0.88	7.25	0.84	0.83	0.9		0.74	0.95	0.8	0.8	0.82	0.87	0.88	0.8	
10/03/2022	0.75	7.31	0.84	0.85	0.89	0.9	0.77	0.82	0.85	0.81	0.91	0.9	0.88	0.81	
11/03/2022	0.79	7.29	0.71	0.76	0.79	0.79	0.68	0.76	0.84	0.74	0.77	0.71	0.78	0.75	
14/03/2022	0.75	7.31	0.59	0.61	0.64	0.73	0.62	0.88	0.62	0.63	0.66	0.64	0.61	0.61	
15/03/2022	0.75	7.29	0.6	0.58	0.64	0.61	0.63	0.61	0.54	0.6	0.61	0.55	0.6	0.55	
16/03/2022	0.72	7.25	0.63	0.61	0.62	0.7	0.63	0.71	0.52	0.62	0.57	0.64	0.59	0.54	
17/03/2022	0.78	7.22	0.75	0.77	0.77	0.79	0.61	0.78	0.54	0.76	0.75	0.76	0.78	0.77	
18/03/2022	0.77	7.22		0.76	0.62	0.75	0.51	0.72	0.6	0.7	0.75	0.75	0.74	0.63	
21/03/2022	0.77	7.2	0.73	0.81	0.8	0.77	0.51	0.76	0.67	0.75	0.77	0.74	0.74	0.76	
22/03/2022	0.86	7.19	0.72	0.79	0.74	0.9	0.54	0.82	0.7	0.73	0.75	0.77	0.76	0.69	
23/03/2022	0.74	7.18	0.73	0.76	0.76	0.71	0.62	0.75	0.65	0.77	0.7	0.76	0.76	0.66	
24/03/2022	0.82	7.19	0.71	0.72	0.78	0.81	0.65	0.75	0.64	0.73	0.73	0.72	0.76	0.67	
25/03/2022	0.78	7.19	0.72	0.81	0.83	0.76	0.68	0.78	0.61	0.83	0.82	0.83	0.83	0.8	
28/03/2022	0.82	7.2	0.75	0.75	0.77	0.89	0.7	0.71	0.71	0.76	0.77	0.76	0.75	0.73	
29/03/2022	0.81	7.19	0.81	0.8	0.8	0.83	0.73	0.82	0.8	0.75	0.83	0.82	0.79	0.76	
30/03/2022	0.82	7.19	0.84	0.81	0.81	0.8	0.73	0.83	0.8	0.8	0.78	0.8	0.82	0.8	
31/03/2022	0.82	7.18	0.82	0.8	0.8	0.82	0.74	0.84	0.8	0.8	0.8	0.82	0.8	0.8	
01/04/2022	0.81	7.17	0.78	0.83	0.77	0.81	0.7	0.84	0.78	0.79	0.78	0.78	0.76	0.78	
04/04/2022	0.83	7.18	0.8	0.88	0.78	0.83	0.7	0.8	0.77	0.85	0.76	0.77	0.75	0.75	
05/04/2022	0.81	7.19	0.72	0.7	0.75	0.74	0.72	0.77	0.7	0.71	0.73	0.74	0.84	0.7	
06/04/2022	0.82	7.2	0.7	0.72	0.77	0.73	0.68	0.79	0.7	0.74	0.7	0.76	0.85	0.75	
07/04/2022	0.81	7.26	0.73	0.7	0.74	0.74	0.69	0.75	0.72	0.72	0.72	0.71	0.75	0.68	
11/04/2022	0.74	6.92	0.76	0.68	0.79	0.75	0.68	0.76	0.7	0.75	0.77	0.78	0.77	0.72	
12/04/2022	0.83	6.92	0.78	0.81	0.76	0.87	0.78	0.85	0.69	0.81	0.75	0.8	0.82	0.8	

Page 33 of 101

13/04/2022	0.82	6.95	0.77	0.85	0.85	0.84	0.78	0.85	0.78	0.86	0.84	0.81	0.8	0.77	
14/04/2022	0.8	6.92	0.82	0.82	0.82	0.84	0.81	0.84	0.81	0.82	0.86	0.82	0.83	0.78	
19/04/2022	0.78	6.99	0.68	0.76	0.77	0.76	0.77	0.86	0.71	0.78	0.71	0.8	0.78	0.72	
20/04/2022	0.8	6.99	0.72	0.79	0.74	0.78	0.75	0.83	0.68	0.78	0.76	0.76	0.79	0.73	
21/04/2022	0.82	7.04	0.7	0.89	0.85	0.85	0.79	0.86	0.89	0.89	0.83	0.7	0.89	0.77	
22/04/2022	0.8	7.07	0.81	0.82	0.82	0.84	0.81	0.85	0.8	0.79	0.81	0.83	0.75	0.7	
27/04/2022	0.78	7.17	0.8	0.83	0.85	0.86	0.84	0.86	0.8	0.83	0.82	0.8	0.82	0.81	
28/04/2022	0.81	7.1	0.79	0.82	0.81	0.87	0.79	0.87	0.75	0.83	0.82	0.84	0.82	0.78	
29/04/2022	0.79	7.04	0.76	0.81	0.82	0.81	0.8	0.81	0.83	0.82	0.81	0.83	0.83	0.79	
03/05/2022	0.78	6.97	0.84	0.78	0.85	0.85	0.81	0.86	0.78	0.83	0.73	0.78	0.81	0.79	
04/05/2022	0.8	6.96	0.78	0.84	0.81	0.84	0.77	0.83	0.78	0.82	0.81	0.82	0.81	0.79	
05/05/2022	0.8	6.99	0.78	0.84	0.87	0.86	0.8	0.86	0.79	0.84	0.8	0.8	0.81	0.78	
06/05/2022	0.82	7.03	0.77	0.83	0.85	0.87	0.77	0.87	0.8	0.84	0.82	0.84	0.81	0.8	
09/05/2022	0.79	7.03	0.74	0.8	0.85	0.83	0.77	0.8	0.81	0.81	0.83	0.85	0.79	0.8	
10/05/2022	0.8	7.07	0.69	0.8	0.85	0.86	0.79	0.86	0.78	0.82	0.82	0.8	0.79	0.76	
11/05/2022	0.81	7.1	0.8	0.84	0.84	0.88	0.82	0.87	0.8	0.85	0.82	0.81	0.82	0.79	
12/05/2022	0.78	7.12	0.83	0.82	0.84	0.82	0.86	0.83	0.77	0.83	0.83	0.84	0.85	0.78	
13/05/2022	0.79	7.12	0.74	0.8	0.79	0.82	0.79	0.76	0.79	0.8	0.79	0.79	0.79	0.78	
16/05/2022	0.78	7.12	0.76	0.79	0.78	0.8	0.78	0.82	0.75	0.77	0.82	0.79	0.79	0.74	
17/05/2022	0.8	7.05	0.75	0.86	0.82	0.87	0.88	0.86	0.78	0.83	0.8	0.81	0.79	0.76	
18/05/2022	0.8	7.02	0.78	0.81	0.85	0.86	0.9	0.86	0.79	0.85	0.82	0.82	0.81	0.81	
19/05/2022	0.79	7.02	0.79	0.84	0.78	0.8	0.85	0.74	0.83	0.75	0.75	0.78	0.87	0.78	
20/05/2022	0.81	7.04	0.72	0.73	0.82	0.86	0.87	0.89	0.77	0.8	0.8	0.82	0.8	0.77	
23/05/2022	0.78	7.16	0.79	0.74	0.83	0.83	0.8	0.84	0.84	0.82	0.79	0.8	0.8	0.79	
24/05/2022	0.78	7.07	0.86	0.82	0.84	0.87	0.69	0.78	0.79	0.8	0.85	0.81	0.8	0.78	
25/05/2022	0.8	6.99	0.79	0.82	0.78	0.82	0.78	0.81	0.78	0.75	0.8	0.82	0.82	0.8	
26/05/2022	0.8	6.96	0.78	0.8	0.82	0.81	0.82	0.83	0.81	0.84	0.79	0.82	0.82	0.78	
27/05/2022	0.79	6.95	0.79	0.81	0.81	0.83	0.81	0.85	0.75	0.8	0.82	0.82	0.82	0.81	
30/05/2022	0.79	7.11	0.79	0.82	0.83	0.83	0.84	0.84	0.78	0.81	0.82	0.83	0.83	0.76	

Page 34 of 101

31/05/2022	0.79	7.05	0.84	0.79	0.81	0.8	0.83	0.82	0.78	0.78	0.8	0.81	0.76	0.72	
01/06/2022	0.82	6.95	0.72	0.81	0.83	0.86	0.81	0.85	0.77	0.81	0.85	0.83	0.78	0.79	
02/06/2022	0.79	6.99	0.77	0.79	0.78	0.83	0.8	0.85	0.83	0.79	0.83	0.78	0.79	0.78	
06/06/2022	0.79	7.17	0.76	0.83	0.82	0.82	0.8	0.82	0.82	0.83	0.83	0.84	0.85	0.77	
07/06/2022	0.77	7.19	0.76	0.77	0.82	0.8	0.8	0.78	0.81	0.85	0.81	0.82	0.79	0.78	
08/06/2022	0.8	7.17	0.75	0.7	0.79	0.79	0.76	0.85		0.78	0.76	0.79	0.79	0.77	
09/06/2022	0.8	7.21	0.78	0.74	0.81	0.77	0.81	0.78	0.83	0.85	0.83	0.83	0.86	0.78	
10/06/2022	0.78	7.21	0.85	0.8	0.76	0.79	0.81	0.86	0.78	0.77	0.8	0.81	0.78	0.77	
13/06/2022	0.81	7.23	0.88	0.91	0.9	0.92	0.84	0.9	0.8	0.91	0.87	0.86	0.89	0.8	
14/06/2022	0.8	7.23	0.83			0.85	0.84	0.85							
15/06/2022	0.8	7.22	0.78	0.84	0.8	0.74	0.79	0.75	0.76	0.2	0.76	0.75	0.78	0.65	
16/06/2022	0.81	7.19	0.8	0.83	0.81	0.86	0.8	0.81	0.82	0.86	0.67	0.85	0.83	0.78	
17/06/2022	0.8	7.12	0.77	0.86	0.81	0.85	0.82	0.79	0.83	0.67	0.85	0.87	0.87	0.79	
20/06/2022	0.79	7.21	0.76	0.8	0.81	0.82	0.69	0.78	0.78	0.78	0.82	0.79	0.82	0.75	
21/06/2022	0.76	7.18	0.85	0.83	0.83	0.85	0.76	0.87	0.8	0.84	0.82	0.82	0.84	0.75	
22/06/2022	0.79	7.21	0.83	0.87	0.86	0.83	0.82	0.84	0.83	0.85	0.85	0.83	0.84	0.78	
23/06/2022	0.77	7.22	0.81	0.83	0.79	0.84	0.79	0.81	0.84	0.8	0.8	0.79	0.8	0.75	
24/06/2022	0.79	7.16	0.76	0.82	0.82	0.81	0.77	0.81	0.78	0.84	0.8	0.85	0.84	0.74	
27/06/2022	0.81	6.96	0.74	0.81	0.81	0.84	0.81	0.82	0.78	0.77	0.79	0.82	0.82	0.68	
28/06/2022	0.81	7.02	0.79	0.79	0.8	0.81	0.78	0.84	0.79	0.82	0.78	0.8	0.78	0.77	
29/06/2022	0.81	7.08	0.79	0.75	0.74	0.76	0.74	0.78	0.73	0.75	0.72	0.71	0.73	0.58	
30/06/2022	0.79	7.14	0.7	0.76	0.72	0.71	0.67	0.74	0.77	0.76	0.77	0.77	0.76	0.74	

					Turbidity		Turbidity Bore	
	Turbibity	Ecoli	Turbidity	Ecoli	Bore 1	Ecoli Bore 1	2	Ecoli Bore 2
	Test Point 1	Test Point 1	Test Pt 5	Test Pt 5				
Day	Weekly	Weekly	Weekly	Weekly	Monthly	Monthly	Monthly	Monthly
min	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00
max	0.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ave	0.35	-	#DIV/0!	-	#DIV/0!	-	#DIV/0!	-
01/07/2021								
02/07/2021								
05/07/2021								
06/07/2021								
07/07/2021								
08/07/2021								
09/07/2021								
10/07/2021								
12/07/2021								
13/07/2021								
14/07/2021								
15/07/2021								
16/07/2021								
17/07/2021								
19/07/2021								
20/07/2021								
21/07/2021								
22/07/2021								
23/07/2021								
26/07/2021								

Page 36 of 101
27/07/2021			
28/07/2021			
29/07/2021			
30/07/2021			
03/08/2021			
04/08/2021			
05/08/2021			
06/08/2021			
09/08/2021			
10/08/2021			
12/08/2021			
13/08/2021			
16/08/2021			
17/08/2021			
18/08/2021			
19/08/2021			
20/08/2021			
23/08/2021			
25/08/2021			
26/08/2021			
27/08/2021			
31/08/2021			
01/09/2021			
06/09/2021			
10/09/2021			
13/09/2021			
14/09/2021			
16/09/2021			
20/09/2021			

Page 37 of 101

21/09/2021				
23/09/2021				
24/09/2021				
27/09/2021				
28/09/2021				
29/09/2021				
30/09/2021				
01/10/2021				
05/10/2021				
06/10/2021				
07/10/2021				
08/10/2021				
11/10/2021				
12/10/2021				
13/10/2021				
14/10/2021				
15/10/2021				
18/10/2021				
19/10/2021				
20/10/2021				
21/10/2021				
22/10/2021				
25/10/2021				
26/10/2021				
27/10/2021				
28/10/2021				
29/10/2021				
01/11/2021				
02/11/2021				

Page 38 of 101

03/11/2021				
04/11/2021				
05/11/2021				
08/11/2021				
09/11/2021				
10/11/2021				
11/11/2021				
12/11/2021				
15/11/2021				
16/11/2021				
17/11/2021				
18/11/2021				
19/11/2021				
22/11/2021				
23/11/2021				
24/11/2021				
25/11/2021				
26/11/2021				
29/11/2021				
30/11/2021				
01/12/2021				
02/12/2021				
03/12/2021				
06/12/2021				
07/12/2021				
08/12/2021				
09/12/2021				
10/12/2021				
13/12/2021				

Page 39 of 101

14/12/2021				
15/12/2021				
16/12/2021				
17/12/2021				
20/12/2021				
21/12/2021				
22/12/2021				
23/12/2021				
24/12/2021				
27/12/2021				
28/12/2021				
29/12/2021				
30/12/2021				
31/12/2021				
03/01/2022				
04/01/2022				
05/01/2022				
06/01/2022				
07/01/2022				
10/01/2022				
11/01/2022				
12/01/2022				
13/01/2022				
14/01/2022				
17/01/2022				
18/01/2022				
19/01/2022				
20/01/2022				
21/01/2022				

Page 40 of 101

24/01/2022					
25/01/2022					
26/01/2022					
27/01/2022					
28/01/2022					
31/01/2022	0.46	absent			
01/02/2022					
02/02/2022					
03/02/2022					
04/02/2022					
07/02/2022	0.42	absent			
08/02/2022					
09/02/2022					
10/02/2022					
11/02/2022					
14/02/2022	0.29	absent			
15/02/2022					
16/02/2022					
17/02/2022					
18/02/2022					
21/02/2022	0.23	absent			
22/02/2022					
23/02/2022					
24/02/2022					
25/02/2022					
28/02/2022					
01/03/2022					
02/03/2022					
03/03/2022					

Page 41 of 101

04/03/2022				
07/03/2022				
08/03/2022				
09/03/2022				
10/03/2022				
11/03/2022				
14/03/2022				
15/03/2022				
16/03/2022				
17/03/2022				
18/03/2022				
21/03/2022				
22/03/2022				
23/03/2022				
24/03/2022				
25/03/2022				
28/03/2022				
29/03/2022				
30/03/2022				
31/03/2022				
01/04/2022				
04/04/2022				
05/04/2022				
06/04/2022				
07/04/2022				
11/04/2022				
12/04/2022				
13/04/2022				
14/04/2022				

Page 42 of 101

19/04/2022			
20/04/2022			
21/04/2022			
22/04/2022			
27/04/2022			
28/04/2022			
29/04/2022			
03/05/2022			
04/05/2022			
05/05/2022			
06/05/2022			
09/05/2022			
10/05/2022			
11/05/2022			
12/05/2022			
13/05/2022			
16/05/2022			
17/05/2022			
18/05/2022			
19/05/2022			
20/05/2022			
23/05/2022			
24/05/2022			
25/05/2022			
26/05/2022			
27/05/2022			
30/05/2022			
31/05/2022			
01/06/2022			

Page 43 of 101

02/06/2022				
06/06/2022				
07/06/2022				
08/06/2022				
09/06/2022				
10/06/2022				
13/06/2022				
14/06/2022				
15/06/2022				
16/06/2022				
17/06/2022				
20/06/2022				
21/06/2022				
22/06/2022				
23/06/2022				
24/06/2022				
27/06/2022				
28/06/2022				
29/06/2022				
30/06/2022				

Appendix C: Health based Targets Assessment

Sub-Scheme	Comments	Scheme
Catchment Characteristics		Pormpuraaw
Human Faecal Waste/ Campers	Is human waste able to seep into the catchment from toilets, or are there other related issues? Provide details of wastewater collection, storage, treatment and disposal systems.	No, Reticulated sewerage, WWTP away from catchment
Recreation	Is there recreation next to or on the river or dam? Are there water source pollution reduction strategies.	Νο
Animals in the Catchment (e.g. cattle)	Describe any strategies to remove dead animals from water sources, and to control large numbers.	Ranger controls animals such as pigs, removal is undertaken.
Landfill	Is there a landfill either currently being used are a dis-used one in the catchment?	Νο
Mining Activity and Mineral Deposits	A search of mining activities has returned the below sites. Please check for accuracy and add additional information that may impact the catchment.	Νο
Nearby major transport routes	A search of transport routes has returned the below sites. Please check for accuracy and add additional information that may impact the catchment.	No
Chemicals stored in catchment	Are chemicals stored in the catchment? If so, please describe and what management is in place.	No
Dryland salinity risk (national dryland salinity risk mapping)		No
Storms and floods	Is there a flood risk to water supply and if so what is the management of this risk?	No - deep aquifer
Drought, variable rainfall and overuse of water	Assume yes to all sites. Offer any additional information such as resource monitoring practices such as backup supplies and water restrictions.	No - deep aquifer
Free Living Organisms	Is there a noticable population of birds, fish, or organisms in the water supply? Please describe what these are.	Νο
Bushfire	Is there a bush fire risk? Do you undertake backburning and how frequent? Do you protect the water supply infrastructure?	No - deep aquifer

Storage stagnation	Is the water supply susceptible to blue-green algal blooms or	No
	stratification? Please provide details, and what inspections and	
	actions are undertaken.	

Health Based Targets- Catchment Type and Hazard Cataloguing Surface Water Assessment Only -Undertake Bore Pre-assessment prior to using this information.

Land use challeng e/ pathoge n sources	Intensity	Proximity	Protection	Category
Permanent human	Negli gible No STP s Minimal, well-managed on-site sewage management systems	Human settlements and recreation excluded from the whole area of influence, typically the whole hydrological catchment and reservoir	Natural bushland Protection enforced by policed regulation Low intensity/low risk activities may be allowed in the outer catchment but active source protection (e.g. ranger patrols) is practiced to ensure negligible contamination risk Supply is from a large reservoir	1.Protected catchment
Permanent human	Minimal No stps Low density rural developments with well managed on-site sewage management systems	Human settlements excluded from inner catchment (typical 2-3km from full supply)	Bushland inner catchment, low density rural outer catchment Stock fully fenced out of main feeder streams behind vegetated buffer zones. Protection enforced by policed regulation Low level and low intensity activities may be allowed wthin the outer catchment but active source protection (e.g. ranger patrols) is practiced to minimise contamination risk.	2.Moderately protected catchment
Permanent human	Moderate May include limited sewered urban areas and STPs within outer catchment	Human settlements excluded from inner catchment	Medium density rural outer catchment possibly including some limited areas of urban development. Any STP effluent is filtered and disinfected and sewer spills are actively minimised. Major sewer overflows or STP failures would lead to a downstream water treatment shut down or boil water alert. Stock may have access to main feeder streams in the outer catchment. Protection enforced by policed regulation within inner catchment	3. Poorly protected catchment
Permanent human	High Includes sewered urban areas and STPs	No exclusion zone	Although there are urban inputs, the total quantity of treated sewage or stormwater effluent flowing into the catchment is sufficiently limited that the Phase 2 AGWR are not applicable. Reasonable upper limits are 10% treated sewage effluent and 30% stormwater runoff. Any sewage or intensive agricultural effluent is treated (filtered and disinfected) and spills are actively minimised. Major spills would lead to a downstream water treatment shut down or boil water alert.	4. Unprotected catchment

Itinerant Negligible Human settlements and Natural husbland	1 Protected catchment
human Minimal essential entry for recreation excluded from the Protection enforced by policed regulation	
rangers pest controllers fire whole area of influence I ow intensity/low risk activities may be allowed i	the outer catchment but active
managers typically the whole source protection (e.g. ranger particle) is practice	to ensure negligible
Minimal illegal entry hydrological catchment and contamination risk	
reservoir Supply is from a large reservoir	
Itinerant Low level, low intensity recreation No recreation on the main Bushland inner catchment, low density rural ou	er catchment 2. Moderately protected
human water body Stock fully fenced out of main feeder streams be	ind vegetated buffer zones catchment
Protection enforced by policed regulation	
Low level and low intensity activities may be all	ved within the outer catchment
but active source protection (e.g. ranger patrols)	s practiced to minimise
contamination risk.	
Itinerant Moderate level of land-based No recreation on the main Medium density rural outer catchment possibly in	cluding some limited areas of 3. Poorly protected
human recreation water body urban development.	catchment
Any STP effluent is filtered and disinfected and s	wer spills are actively minimised.
Major sewer overflows or STP failures would lea	to a downstream water
treatment shut down or boil water alert.	
Stock may have access to main feeder streams	the outer catchment.
Protection enforced by policed regulation within	ner catchment.
Itinerant High No exclusion zone Although there are urban inputs, the total quantif	of treated sewage or stormwater 4. Unprotected
human Intense land-based recreation effluent flowing into the catchment is sufficiently	mited that the Phase 2 catchment
May include water based AGWR are not applicable. Reasonable upper lim	ts are 10% treated sewage
recreation on reservoirs/rivers effluent and 30% stormwater runoff.	
Any sewage or intensive agricultural effluent is tr	ated (filtered and disinfected)
and spills are actively minimised. Major spills we	Id lead to a downstream water
treatment shut down or boil water alert.	
Stock Negligible Human settlements and Natural bushland	1. Protected catchment
animals No farms recreation excluded from the Protection enforced by policed regulation	
Limited (controlled) populations of whole area of influence, Low intensity/low risk activities may be allowed	the outer catchment but active
teral animals typically the whole source protection (e.g. ranger patrols) is practice	to ensure negligible
hydrological catchment and contamination risk	
reservoir Suppy is from a large reservo	
Stock Low density Parming excluded from inner Bushland inner catchment, low density rural oute	catchment 2. Moderately protected
animais No dairies, reediots, etc. catchment Stock fully renced out or main feeder streams by	ning vegetated buffer zones.
Protection enforced by policed regulation	ad within the eviter established
Low level and low internsity activities may be allo	a prostigad to minimize
but active source protection (e.g. ranger patrols)	
Stock Medium depoity Earming evoluded from inport Medium depoity surel outer established	oluding some limited areas of 2 Poorly protected
animals on Na derisity and the store and the	Surving some inflited areas of S. Poolity protected
animals of the dames, recurds, etc. Calciment upan development. Upan development. Any STP offluent is filtered and disinfected and	awar spills are actively
ninimical Major enver overflower of STP failure	would lead to a downstream
water treatment shut down or boil water alert	
Stock may have access to main feeder streams	the outer catchment

Stock animals	Intensive Includes dairies, feedlots, etc.	No exclusion zone	Although there are urban inputs, the total quantity of treated sewage or stormwater effluent flowing into the catchment is sufficiently limited that the Phase 2 AGWR are not applicable. Reasonable upper limits are 10% treated sewage effluent and 30% stormwater runoff. Any sewage or intensive agricultural effluent is treated (filtered and disinfected) and spills are actively minimised. Major spills would lead to a downstream water	4. Unprotected catchment
			treatment shut down or boil water alert.	

Microbial Indicator Assessment Table

Band	Description of Faecal Contamination	E. coli number per 100 mL (maximum value in dataset)
1	Negligible	≤ 20
2	Moderate	20 to 2,000
3	Heavy	2,000 to 20,000
4	Gross	>20,000*
Not Available		

Combining vulnerability and microbial assessments to confirm source water category

		Bands of maximum <i>E</i> .	<i>coli</i> result per 100 mL	
Preliminary source water category based on vulnerability assessment	<20 (Band 1)	20 to 2000 (Band 2)	2000 to 20,000 (Band 3)	>20,000 (Band 4: not recommended for use)
	1	2	3	4
1. Protected catchment	Category 1	Category 2	Anomalous	Not suitable
2. Moderately protected catchment	Category 2	Category 2	Anomalous	Not suitable
3. Poorly protected catchment	Anomalous	Category 3	Category 4	Not suitable
4. Unprotected catchment	Anomalous	Category 4	Category 4	Not suitable

Bin classification	Source water type	Typical <i>E. coli</i> results from raw water monitoring (number/100mL)#	Minimum treatment requ	irements expressed as L	RV target^
			Cryptosporidium	Bacteria	Viruses
Category 1	Fully protected surface water	<20	0	-4	0
Category 2	Groundwater or surface water with moderate levels of protection	20 to 2000	-2.5	-5	-3
Category 3	Groundwater or surface water with poor levels of protection	20 to 2000	-3.5	-5	-4
Category 4	Unprotected surface water	2000 to 20,000*	-5.5	-6	-6
Fully protected groundwater	Fully protected groundwater	<1	0	0	0

Table 5.7.1. Bin classification and minimum treatment requirements, based on source water characteristics and E. coli monitoring data

Health Based Targets Assessment

Scheme Name	Pormpuraaw
Sub-Catchment Name	Pormpuraaw
LRV Required Assessment	
Catchment Details	
Catchment/ river basin	
Rivers and water bodies	
Map Reference	

Population	750
Connections	207
Water Source	Bore
Water Source Type	Bores
Usage	Primary
Vulnerability Assessment	
Bores (determination if the bore is under the influnece of surface water)	
Protected wellhead works (fenced, above flood level)?	Yes – fenced and above flood level
Bore sealed from ingress (including flood events)?	Yes
Depth to groundwater >10 metres?	Yes
Depth to bore pump >15 metres?	Yes
A confining layer above the aquifer from which the groundwater is being drawn, or the overlying material is homogenous, either homogenous sand or gravel?	Yes
The electrical conductivity of the groundwater does not decrease following rainfall, high flow or floods?	no
The turbidity of the groundwater does not increase following rainfall or floods?	no
E.coli an issue? (see below assessment of category)	No – no e.coli detected
Treat as a surface water source? (if no, treatment is generally not required, however confirm there is no E.coli or other contaminants present)	No
Resulting Category (Manual Entry)	1. Protected catchment
Microbial Indicator Assessment (from samples taken chose to the intake)	
Band	1
Combining vulnerability and microbial assessments to confirm source water cate	gory
confirm source water category	Category 1
Chosen source water category (Manual Entry)	Category 1
Log Reduction Value Deficit	
Cryptosporidium	0
Bacteria	-4
Viruses	0
LRV Credits Assessment	
Existing System Setup	
Filtration	

Туре	Not required - Protected
Cryptosporidium treatment ability	0
Bacteria treatment ability	0
Viruses treatment ability	0
Score	
Cryptosporidium	0
Bacteria	-4
Viruses	0
Disinfection	
Туре	Chlorination 7
Cryptosporidium treatment ability	0
Bacteria treatment ability	4
Viruses treatment ability	4
Score	
Cryptosporidium	0
Bacteria	0
Viruses	4
Other Disinfection (cannot be the previous disinfection type)	
Туре	
Cryptosporidium treatment ability	0
Bacteria treatment ability	0
Viruses treatment ability	0
Score	
Cryptosporidium	0.0
Bacteria	0.0
Viruses	4.0
Additional Treatment Costs	
Filtration	Not required
Disinfection or relocation of unit	Not required
Other Disinfection (cannot be the previous disinfection type)	Not required

Other requirements such as raw pipeline re-direction	Not required
Total	•

Ap	pe	ndix	D: F	Risk A	۱S	S	es	sment																					
	-				ax	timu	ım Ri	5	R	Resi	idua	l Risk				Exis	sting Con	trols					utur	e Co	ontro	ols			
Process Step	ltem No. ▼	Hazard	Туре 🗸	Hazardous Ever			RI	Existing Preventative Measures (Upstream and at Current	Ŧ	*	R	Certai t	Reasons for Selection of Likelihood and Consequence	CCP Re	HACCP Re	Ops Procedu	Verif Procedu	Corrective Action	Target Crit	Breach Crit	Actions/ Master Controls Master Actions	Infrastr uc	Ψ.	▼ RI	•	New A	d t	Priorit y / Y	Budg 👻
	Proces	s Step: Catchmer	t(s)																								•		
Catchment	CMT1	Bacteria/Virus	Biological	Animalsin cat chment	с	2	Medium	Alternative water sources are available (bores) however no management procedure exists to choose to switch over during poor water quality periods.	С	2	Mediun	Confider	t t place. Controlsinplace.	Catchmen t	Catchmer t	n Nil.	Nil.	Nil.	Nil.	Nil.	Add procedure for alternative water supply switch over.	•	с	2 Mec	dium	No	Senior Plumber	2023	Internal Wages
Catchment	CMT3	Protozoa	Biological	Animalsin cat chment	С	2	Medium	See CMT1	с	2	Mediun	Confider	There is a catchment management plan in place. Controls in place.								See CMT1. Action assigned in CMT1.		С	2 Mec	dium				
Catchment	CMT4	Amoeba(Naeglaria, Acanthamoeba)	Biological	Animalsin cat chment	с	2	Medium	See CMT1	с	2	Mediun	Confider	There is a catchment management plan in place. Controls in place.								See CMT1. Action assigned in CMT1.		с	2 Mec	dium				
Catchment	CMT9	Iron	Chemical	Natural geology, sediment	A	1	Low	See CMT1	A	1	Low	Certain	3 yearsof WQ results reviewed.								Investigate potentially shandy water sources. Investigate the WQ results as they were significantly different. Check future risk score.		с	2 Mec	dium	F	Senior Plumber	2024	Internal Wages
Catchment	CMT15	Scaling	Chemical	TDS or organics in raw water	D	3	High		D	3	High	Certain	3 yearsof WQ results reviewed. Aesthetic risk.								Continue to monitor this parameter. Consider a filtration unit.		D	з н	igh	F	Senior Plumber	Ongoing	Internal Wages
Catchment	CMT16	Alkalinity	Chemical	Potential change in rati of surface runoff to storage	D	3	High		D	3	High	Certain	3 years of WQ results reviewed. Aesthetic risk.								Continue to monitor this parameter. Consider a dosing unit.		D	з н	igh	F	Senior Plumber	Ongoing	Internal Wages
Catchment	CMT19	Colour	Physical	Naturally occurring	С	2	Medium	See CMT1	с	2	Mediun	Certain	Likely related to TDS. No known complaints recorded for colour.								See CMT16. Action assigned in CMT16.		с	2 Mec	dium				
Catchment	CMT23	Various Contaminants	Physical/Chemie al etc.	c Bushfirefollowedby runoffevent	с	2	Medium	1	с	2	Mediun	Confider	Bushfiresare common in the catchment, thowever monitoring results have not shown responsive changes in parameters.								No further action asthisis monitored.		с	2 Mec	dium				
	Proces	sStep: Bore																						N	VA				
Intake	CMT1	Bacteria/Virus	Biological	Animalsin cat chment	С	2	Medium	Fencing around the bore head area. Alternative between sources.	с	2	Mediun	Confider	nt Daily inspections. No other active measures to reduce L&C.	Intakes	Intakes	Sourcewater management plan	Daily testing procedure	Source water management plan			Nil		с	2 Med	dium				
Intake	CMT3	Protozoa	Biological	Animalsin cat chment	С	2	Medium	See above CMT1.	С	2	Mediun	Confider	nt Daily inspections. No other active measures to reduce L&C.								Nil		С	2 <mark>Mec</mark>	dium				
Intake	CMT4	Amoeba(Naeglaria, Acanthamoeba)	Biological	Animalsin cat chment	С	2	Medium	See above CMT1.	С	2	Mediun	Confider	nt Daily inspections. No other active measures to reduce L&C.								Nil		С	2 Med	dium				
Intake	CMT15	Scaling	Chemical	TDS or organics in raw water	D	3	High	See above CMT15.	D	3	High	Confider	nt Noreal active measures to reduce L&C								See filtration option discussed in CMT15. Action assigned in CMT15.	1	в	2 Li	ow				
Intake	CMT16	Alkalinity	Chemical	Potential change in rati of surface runoff to storage	D	3	High	See above CMT16.	D	3	High	Confider	nt Noreal active measures to reduce L&C								See filtration option discussed in CMT15. Action assigned in CMT15.	1	в	2 Li	ow				
Intake	CMT19	Colour	Physical	Naturally occurring	С	2	Medium	See above CMT1.	с	2	Mediun	Confider	nt noreal active measurestoreduce L&C								See filtration option discussed in CMT15. Action assigned in CMT15.	1	в	2 L	ow				
Intake	INT4	Various Contaminants	Physical/Chemie al etc.	Intake damaged, local pooling around bore head causing ingress	С	5	Very High	Bore head is raised and sealed to Australian and Queensland Government standards/	А	2	Low	Confider	Inspectionsoccur that review the state of the bore head.											N	/A				
Intake	INT7	BoreBlockage	Whole of System	Clogged Intake - Natura I Iron Oxidising Bacteria causing blockage or	C	2	Medium	Natural aeration drops from>5m down inlet into reservoir	с	1	Low	Certain	Bore chlorination and flow monitoring upgraded in 2018. No Further Action Required											N	/A				
Intake	INT8	Temperature	Physical	Natural bore temperature.	С	2	Medium	1	с	2	Mediun	Certain	Bore water iswarm but ok.								Nil, existing system temperatures are tolerable.		С	2 Mec	dium				
Intake	INT10	Various Contaminants	Whole of System	Sabotage/ Terrorism	A	5	High	Alternative supply.	А	1	Low	Certain	Adequate alternatives available.			Daily Checklist	Daily testing procedure							N	VA.				

Page 53 of 101

	Proces	s Step: Chemical I	Dosing (Disinfe	ection and pH Contro	I)																		NA				
Chemical Dosing	CMT1	Bacteria/Virus	Biological	Animalsin cat chment	C	2	Medium	C12	в	2	.ow	Confident	Based on HBT assessment the risk is ok.										N∕A				
Chemical Dosing	CMT3	Protozoa	Biological	animalsin cat chment	С	2	Medium	C12	с	2 <mark>Me</mark>	dium	Confident	i See CMT1.										N∕A				
Chemical Dosing	CMT4	Amoeba(Naeglaria, Acanthamoeba)	Biological	animalsin cat chment	С	2	Medium	CI2	В	2	Low	Confident	See CMT1.										NA				
Chemical Dosing	CMT15	Scaling	Chemical	TDS or organicsin raw water	D	3	High	Oxidation	с	2 Me	edium	Confident	Possible partial oxidation of dissolved solids, however this may introduce THMs.								Test for THMsin the treated water. Future control risk not reduced at thistime.	C 2	e Medium		Senior Plumber	2023	1,000
Chemical Dosing	CMT16	Alkalinity	Chemical	Potential change in ratio of surface runoff to storage	D	3	High		D	3 H	ligh	Confident	i nochange								Investigate a future filtration plant which will have benefits to other risk items.	B	Low	Yes	Senior Plumber	2023	25,000
Chemical Dosing	CMT17	рН	Chemical	Natural pHout of range.	D	3	High	Sulphuric Acid Dosing System	A	2	Low	Certain	The dosing system has resolved the high pH issue previously seen	Chemical Dosing	Chemical Dosing	Operations and Maintenance of Acid unit, Daily Checklist, Daily Reading Sheet.	рН	Adjust or stop acid dosing.	7.4	<7.0			N/A				
Chemical Dosing	CMT19	Colour	Physical	Naturally occurring	C	2	Medium	Nil	с	2 <mark>Me</mark>	dium	Confident	nochange								See Disinfection-CMT16, Action assigned above	B	Low				
Chemical Dosing	INT8	Temperature	Physical	Natural bore temperature.	С	2	Medium	Nil	с	2 Me	dium	Confident	i no change								Nil	c 2	Medium				
Chemical Dosing	DIS1	Chlorate	Chemical	chemical breakdown	С	2	Medium	Set pointsand chlorine analysers, Change to Chlorine Gasalways 100%strength. No deoradation	в	2	Low	Confident	Thisriskisfor dosing performance which is considered to be adequate.	Disinfectio n	Disinfecti on	Calibration and setpoint adjustment procedures for	TestingFor FreeChlorinein Situ		CL2 ×0.5	CL2=1.1	Continued Training of all staff.	в 2	Low		Senior Plumber	Ongoing	Internal Wages
Chemical Dosing	DIS2	Chlorine	Chemical	chemical underdose, or injection or recirculation pump or gasinjector equipment	С	4	Very High	Set point sand chlorine analysers, Daily inspections, SCADA monitoring and provision of backup Systems	в	2	Low	Confident	PASChasacquired a list of critical spare parts for system and purchase as spare parts Spare pumps, injectors, gas valveset c. were procured in 2019.								Ensure adequate spare parts on hand including replacement pumps, ejectors and fittings	B	! Low		Senior Plumber	Ongoing	Internal Wages
Chemical Dosing	DIS3	Chlorine	Chemical	chemical overdose	С	4	Very High	Ser point sand chief ine analysers, Gaslevels automatically controlled Verified by Daily Inspection and readings. Test water 10 various locations adjust as consided	в	2	LOW	Confident	See DIS2.								Continued training of all staff. Action assigned above in DIS 1.	B	Low				
Chemical Dosing	DIS4	DBPs	Chemical	elevated organicsand long detention times	C	4	Very High	Set point sand chlorine analysers	В	2	Low	Confident	See DIS2.										N∕A				
Chemical Dosing	DIS5	Bacteria/Virus	Biological	Ineffective disinfection due to turbidity	C	4	Very High	Set point sand chlorine analysers	в	2	low	Confident	See DIS2.										N∕A				
Chemical Dosing	DIS6	Bacteria/Virus	Biological	Insufficient Chlorine Contact Time	С	4	Very High	Chlorine gassystem now includes final trim system monitored on SCADA	В	2	Low	Confident	See DIS2.										N∕A				
Chemical Dosing	DIS7	Bacteria/Virus	Biological	Insufficient Mixing of Chlorine Gas& Water	С	4	Very High	Gas-chlorinated water now recirculated in new reservoir	в	2	LOW	Confident	See DIS2.										N∕A				
Chemical Dosing	DIS8	Bacteria/Virus	Biological	No Chlorine Stock	С	4	Very High	6 x 70kg Chlorine gas cylinders available on site. Allowsfor 6 monthssupply	в	2	Low	Confident	See DIS2.										N∕A				
Chemical Dosing	DIS9	Bacteria/Virus	Biological	Poor weak chemical strength and/or low dose rate	С	4	Very High	Gaschlorination system adjustsstrengthautomatically via setpoint control	в	2	Low	Confident	See DIS2.										N∕A				

									_	_		_		 			 		 _		-			
	Process	Step: Storage R	servoirs																	N/A				
Reservoirs	CMT3	Protozoa	Biological	animalsin catchment	С	2	Medium	Roofed Storages	с	2	Medium	Confiden	t Increased, however cannot reduce.							N/A				
Reservoirs	CMT15	Scaling	Chemical	TDS or organics in raw water	С	2	Medium	Nil	с	2	Medium	Confiden	t Nochangetostatus.					Addresswith CMT1Filter. Action assigned earlier.	в	1 Low				
Reservoirs	CMT16	Alkalinity	Chemical	Potential change in ratio of surface runoff to storage	D	3	High	Nil	D	3	High	Estimate	e Nochangetostatus.							N/A				
Reservoirs	CMT17	рН	Chemical	pHreacting with walls	С	2	Medium	All Reservoirshave Inspections annually	А	1	Low	Confiden	t					Reservoir inspections to be held mid year & documented	A	1 Low		Senior Plumber	Ongoing	Internal Wages
Reservoirs	CMT19	Colour	Physical	Naturally occurring	С	2	Medium	Nil	с	2	Medium	Confiden	t Nochangetostatus.					Addresswith CMT1Filter. Action assigned earlier.	в	1 Low				
Reservoirs	CMT20	Turbidity	Physical	Turbidity. Iron deposits	с	3	High	All Reservoirs drained and cleaned every 5 years	в	2	Low	Confiden	t							N/A				
Reservoirs	INT6	Failure of supply	Whole of System	lossof power or no water	с	2	Medium	Monitored by SCADA. Daily Inspections data Collection, water pumped litres and hourspumping	A	1	Low	Confiden	it					Continued training of all staff. Action assigned above in DIS1	А	1 Low				
Reservoirs	INT8	Temperature	Physical	Natural bore temperature.	С	2	Medium	potentially along retention time.	в	2	Low	Confiden	t potentially a long retention time.							N/A				
Reservoirs	WTP1	Various Contaminants	Physical/Chemic al etc.	telemetry failure allowing untreated or semi-treated water	в	4	High		в	4	High	Estimate	No reduction as the back up systems or a failure management systems are not properly understood.					Investigate SCADA management during failures	в	4 High	Yes	Senior Plumber	2024	Internal Wages
Reservoirs	RES1	Bacteria/Virus	Biological	Animalsin reservoir	с	3	High	Reservoir cleaning and scouring	A	3	Medium	Confiden	All Reservoirs are roofed, water proofed and t vermin proofed. Inspection carried out annually					Reservoir cleaning procedure iscurrently being developed. Inspectionstobe held mid year		N/A	Yes	Senior Plumber	2024	Internal Wages
Reservoirs	RES2	Bacteria/Virus	Biological	Poor Tank turnover	С	3	High	Operational settings in place.	в	3	Medium	Estimate	Ever frequency of potential issues due to daily inspections.					Procedurerequiredfortank turnover		N/A	Yes	Senior Plumber	2023	Internal Wages
	Process	Step: Reticulati	on System																	N/A				,
Reticulation	CMT3	Protozoa	Biological	animalsin catchment	с	2	Medium		с	2	Medium	Confiden	t See CMT1.							N/A				
Reticulation	CMT15	Scaling	Chemical	TDS or organics in raw water	с	2	Medium	Nil	с	2	Medium	Confiden	t Nochangetostatus.					Addresswith CMT1Filter. Action assigned earlier.	в	1 Low				
Reticulation	CMT16	Alkalinity	Chemical	Potential change in ratio of surface runoff to storage	D	3	High	Nil	D	3	High	Confiden	t Nochangetostatus.					Address with CMT1Filter. Action assigned earlier.	в	1 Low				
Reticulation	CMT19	Colour	Physical	Naturally occurring	С	2	Medium	Nil	С	2	Medium	Confiden	t Nochangetostatus.					Addresswith CMT1Filter. Action assigned earlier.	в	1 Low				
Reticulation	INT6	Failure of supply	Whole of System	loss of power or no wat er	с	3	High		в	2	Low	Confiden	Bores#3 and Bore#4 can be connected t directly to the water supply. HOWEVER a boil water alert must be issued. THIS HAS NEVER HAPPENED.							N/A				
Reticulation	WTP1	Various Contaminants	Physical/Chemic al etc.	telemetry failure allowing untreated or semi-treated water through.	с	3	High	Daily checks	в	3	Medium	Confiden	The backup systemsor failure management t systemsare not properly underst ood. Only relevant for pressure and flow values.					Investigate SCADA management during failures. Assess future risk.	в	3 Medium	Yes	Senior Plumber	2024	Internal Wages
Reticulation	RES1	Bacteria/Virus	Biological	Animalsin reservoir	A	3	Medium	Nil	A	3	Medium	Confiden	t Nochange to status.					Action assigned earlier.	A	3 Medium				
Reticulation	RES2	Bacteria/Virus	Biological	Poor Tank turnover	В	3	Medium	Nil	в	3	Medium	Confiden	t Nochange to status.					Action assigned earlier.	A	3 <mark>Medium</mark>				
Reticulation	RET1	Bacteria/Virus	Biological	Ingressof contaminated water - Pipe Breaks/MainsBreak	с	4	Very High	Mainsbreak procedure based on Australian Standardsfor water main break repairs, disinfection	с	2	Medium	Confiden	t Procedure in place. Breakage repairs undertaken under Plumbing Code.		Flushing water Mains	Testing For Free Chlorine in Situ		Nil - procedure in place.	С	2 Medium				
Reticulation	RET4	Turbidity	Physical	sioughing of biofilm, resuspension of sediment in reservoirs/mains, or Pipe Breaks/ Mains breaks	с	2	Medium	Disinfection and Mains Flushing	в	2	Low	Confiden	t Procedure inplace.		Flushing water Mains	Testing For Free Chlorine in Situ				N/A				
Reticulation	RET5	Protozoa	Biological	Backflowfrom reticulationsites	А	4	High	Plumbing and drainage laws. NRVs on all meters. High Level tanksprovide water storaget o	А	3	Medium	Confiden	t Controlsin place.					Nil - procedure in place.	A	3 Medium				

Page 55 of 101

	Proces	Step: Whole of s	ystem																N/A			
Whole of System	WOS1	Human Error	Competency	(formal) No or poor water treatment leading to the presence of harmful bacteria or water of poor aesthetic	с	5	ery E ligh G	On The Job training. Experience. Supervision and Guidance	с	2	Medium	Confident	Controlsinplace.				Routine and formal training being under taken. Continued training of all staff. Action assigned above in DIS 1.	с :	2 Medium			
Whole of System	WOS2	Human Error	Information Management	Water quality data storage and summary	с	3	ligh e	Data is recorded in paper and on computer. Includes external source of verification testing	с	2	Medium	Confident	Controlsinplace.				being undertaken. Continued training of all staff. Action	с :	2 Medium			
Whole of System	WOS3	Failure of supply	Sabot age	Vandalism and terrorism —introduction of harmful bacteria or toxic chemicals	A	4	ligh ii a	Well Fenced and secure infrastructure. Daily site visits and checks	A	2	Low	Estimate	Controlsinplace.						N/A			
Whole of System	WOS4	Failure of supply	Power Loss	Bectricity outage-No water or significant flooding causing no electricity	A	з м	dium ^S a	Standby Generatorsare available	A	2	Low	Confident	Controlsinplace.						N/A			
Whole of System	WOS5	Resources	Suppliers	Lack of transport availability to conduct operational checksand water quality testing.	с	3	ligh f	Back up vehicles are available for water operational staff	A	2	Low	Confident	Controlsinplace. Local testing equipment						N/A			
Whole of System	WOS6	Gevernance	Cyber security	Lack of asset management	С	5	C d g g y igh - F E E N N	Our SCADA provider has developed and implement ed a governancel ramework with h reponsibilities policies reponsibilities policies procedures for information policies fectorical policies relational policies policy - information Systems (S) Policy - Longuted Systems (S) Policy - Information Systems (S) Defense - Teloration Systems Management Guidelines	A	5	Medium	Confident	Controlain place.				MC-01-Valore ABIII by assessment Under take a cyber security audit including apentration test identify critical ates, devices and accept apentration test apentration test apentration test apentration test apentration test (SCADA) for water quality control and Data Acquisition (SCADA) for water quality control and process and approximation (SCADA) for water quality approximation (SCADA) for water quality approximation (SCADA) for water quality approximation (SCADA) for water quality (SCADA) for water quality (SCADA) for water approximation (SCADA) for water quality (SCADA) for water approximation (SCADA) for water approximation (SCADA) (SC	Α :	2 Low	SCADA Maintainer	2024	10,000
Whole of System	WOS7	Governance	Cybersecurity	Inability to detect critical Assets	С	5	ery ligh	Asabove	A	3	Medium	Confident					MC-02 - Governance structure - Frameworkto beinplace with responsibilities - Procedures for information technology and operation technology accurity to be created. MC-03 - Security is as feguards - Create alid MC-03 - Security is as feguards - Create alid o permitted agripulcationsto beinstalled run within Council's Standard Operating Environment (SOE)	A :	2 Low	SCADA Maintainer	2024	3,000
Whole of System	WOS8	Intentional Interference	Cybersecurity	Disruption of Cyber information (IT)	с	5	lery ligh	Asabove	A	3	Medium	Confident	Trantivirussoftware currently installed, OTSCADA machineswill not have anti-virus installedasit canint efferewill SCADA installedasfurer. Cyber recourtly of OTSCADA machinesis controlled by yet icting internet account entrolled by each of external USB drives and fire wall settings.				MC - 04 Detection process - Require SOE security monitoring system security monitoring system that reports anomalies e.g. high CPUse, user accounts, high CPUse, user accounts, MC - 05 Response & Recovery - Organise routine backups/ archiving for ICS equipment, servers and applications.	A :	2 Low	SCADA Maintainer	2024	3,000
Whole of System	WOS9	Intentional Interference	Cybersecurity	Disruption of Systems (IT)	С	5	ery ligh	Asabove	A	3	Medium	Confident	Asabove				Asabove		N/A			
Whole of System	WOS10	Intentional	Cybersecurity	information (OT)	С	5	ligh A	Asabove	Α	3	Medium	Confident	Asabove				Asabove		N/A			

Page 56 of 101

Whole of System	🔻 0S11	Intentional Interference	Cybersecurity	Disruption of Systems (OT)	с	5	Very High	Asabove	A 3	Mediu	n Confiden	Asabove				Asabove		N/A			
Whole of System	WOS 12	Unintentional	Cybersecurity	Disruption of Cyber information (IT)	с	5	Very High	Asabove	A 3	Međur	n Confiden	Asabove				MA - 01 Build Out private S CAD water facilities sites & equipment MA - 02 Build single point of access and authentical list of access and during spontant on met hod burgs spontant on the term main access and the spontant on the main access and the spontant on the spontant spontant access and the document spontant access and the main access and the spontant on the internet access - Tobe internet access - Tobe accined with MA-05 Ma-02 Address wither shall y access and show for y address and show for y address and show for y address and show for y address and the format of the spontant Markow Updates (e.g. allowing y address and the spontant on the spontant access and the spontant on the spontant main on the spontant on the spontant y address and the spontant on the spontant on the spontant y address and the spontant on the spontant on the spontant y address and the spontant on the spontant on the spontant y address and the spontant on the spontant on the spontant y address and the spontant on the spontant on the spontant y address and the spontant on the spontant on the spontant on the spontant y address and the spontant on the spontant on the spontant on the spontant y address and the spontant on the spontan	A	Low	SCADA Maintainer	2024	10,000
Whole of System	WOS 13	Unintentional Interference	Cybersecurity	Disruption of Systems (IT)	с	5	Very High	Asabove	A 3	Mediu	n Confiden	t Asabove				Asabove	\square	N/A			
Whole of System	WOS 14	Unintentional Interference	Cybersecurity	Disruption of Cyber information (OT)	с	5	Very High	As above, Only qualified and trained personnel are assigned the responsibility of implementing and maintaining cybersecurity for OT systems	A 3	Mediu	n Confiden	Asabove				Asabove		N/A			
Whole of System	WOS 15	Unintentional Interference	Cybersecurity	Disruption of Systems (OT)	с	5	Very High	As above, Only qualified and trained personnel are assigned the responsibility of implementing and maintaining cybersecurity for OT systems	A 3	Mediu	n Confiden	t Asabove				Asabove		N/A			
Whole of System	WOS 16	Physical security Breach	Cybersecurity	Unauthorised access	с	5	Very High	Security Key system, induction and procurement procedures, contractor controls.	A 3	Mediu	n Confiden	I.						N/A			
Whole of System	WOS 17	Abuse of Cyber Information	Cybersecurity	SystemsConfiguration and data files System configuration	c	5	Very High	AsinWC56	A 3	Među	n Confiden					MA-05 Install and enable active Virus scanning - OTSCADA machineswill not have anti- virusing and the anti- nitrafferes with SCADA installed oftware. Cybersecurity of OTSCADA machinesiscontrolled by rearriching internat access and the access and	A	Low	SCADA Maintainer	2024	10,000
System Whole of	WOS 18	Theft of information	Cybersecurity	and Data files Accessto Confidential	С	5	High Very	Asin WOS6	A 3	Mediu	n Confiden	t				Asabove		N/A			
Sustan	WOS 19	Fraud	Cybersecurity	information.	С	5	10.00	AsinWOS6	A 3	Mediu	n Confiden	1				Asabove		N/A			

Page 57 of 101

Whole of System	v 620	Regulatory Breaches	Cybersecurity	Unauthorised Accessof privacy	C 5	Very High	AsinWOS6	A	3 Mec	lium Con	nfident					Asabove		N∕A			
Whole of System	WOS21	Control	Cybersecurity	Lack of accesscontrol and identity management	C 5	Very High	AsinWOS6	A	3 Mec	Cor	ifident					MA-10 Implement backup schedule - Tobe done aspart of regular maintenanceof IT/OT systems Backupsof configurationsfilesto be madeand storedonste with a copy stored off-stein the secure or porate Drive, and with the SCADA provider. MA-11 Ensure validity of software licences ongoing asall SCADA OT software licenced and authentication is used across SCADA OT machines.		N/A	SCADA Maintainer	2024	2,000
Whole of System	WOS22	Technical advancement	Cybersecurity	Lack of protective technology and maintenance	C 5	Very High	AsinWOS6	A	3 Mec	ium Con	ıfident					Perform routine manual operation of sites, and ensure document ation exists for operating procedures. Staff should be trained and deemed competent for ummanual operation of sites. Training of manual mode operations for each facility ongoing		N/A	Senior Plumber	2024	Internal Wages
Whole of System	WOS23	Detection	Cybersecurity	Inability to detect a cyber security event	C 5	Very High	Asin WOS6	A	3 Mec	lium Con	ifident					Increased awarenessfrom operators surrounding physical security accesson ICS sites, provided by means of training sessions. Add this to the procedures		N/A	Senior Plumber	2024	Internal Wages
Whole of System	WOS24	Systemfailure	Cybersecurity	Lossof system control	C 5	Very High	Perform routine manual operation at site. Documentation exists for operating procedures. Staff	A	3 Mec	ium Cor	nfident							N/A			
Whole of System	WOS25		Cybersecurity		C 5	Very High		А	3 Mec	ium Cor	nfident							N/A			
Whole of System	WOS26		Cybersecurity		C 5	Very High		A	3 Mec	ium Cor	nfident							N/A			
Whole of System	WOS27		Cybersecurity		C 5	Very High		A	3 Mec	ium Cor	nfident							N⁄A			
Whole of System	WOS28		Cybersecurity		C 5	Very High		A	3 Mec	ium Cor	nfident							N⁄A			
Whole of System	WOS29		Cybersecurity		C 5	Very High		A	3 Mec	ium Cor	nfident							N⁄ A			
Whole of System	WOS30		Cybersecurity		C 5	Very High		A	3 <mark>Mec</mark>	ium Cor	nfident							N/A			
Whole of System	WOS31		Cybersecurity		C 5	Very High		A	3 Mec	ium Cor	nfident							N⁄ A			
Whole of System	WOS32		Cybersecurity		C 5	Very High		А	3 Mec	ium Cor	nfident							N/A			

Page 58 of 101

Appendix E: HCCAP Summary

Target, Alert and Critical Breach Limits

CCP/Process step	Parameter	Associated		Sampling		Target	Action if	Critical	Action if critical limit
/ location		hazard	Frequency	Method	Analysis	limit	target limit is not met	limit	is exceeded
All 11 sample points	Free chlorine	Bacteria (harmful) and chlorine	Daily (excl. public holidays)	HACH Pocket Colorimeter II 58700-00	In-house	>0.5 mg/L, <1.5 mg/L	Confirm correct operation at treatment plant.	<0.3mg/L and >2.0mg/L	Confirm correct calibration at plant. Re- adjust the dose rate at plant. Ensure free chlorine level is within target range.
Sample points 1 & 5	Turbidity	Turbidity	Weekly	HACH 2100Q Turbidimeter	In-house	As low as possible, preferably < 2NTU.	Monitor.	>1NTU	Check system for breakage or malfunction.
	E. coli	Bacteria (harmful)	Weekly	HACH MEL /MPN	In-house	0 MPN/100ml	Re-test	0 MPN/100ml	Report to DEWS within 3 hours
Bore 1 and Bore 2	E. coli	Bacteria (harmful)	Monthly	HACH MEL /MPN	In-house	0 MPN/100ml	Re-test	0 MPN/100ml	Ensure disinfection is working correctly and take sample of treated water
	Turbidity	Turbidity	Monthly	HACH 2100Q Turbidimeter	In-house	As low as possible, preferably < 1NTU.	Monitor.	>1NTU	Check for source of turbidity (i.e. bore contamination) Advise DEWS.
	рН	Optimum pH	Monthly	HACH pH meter HQ11D	In-house	6.5-8.0	Monitor	<6.5, >8.4	Advise DEWs.

CCP/Process step	Parameter	Associated		Sampling		Target	Action if	Critical	Action if critical limit
/ location		hazard	Frequency	Method	Analysis	limit	is not met	limit	IS exceeded
Chlorine Analyser Display Panel	Free chlorine	Bacteria (harmful) and chlorine	Daily	Reading from Analyser Pane and verification from HACH Pocket Colorimeter II	In-house	Setpoint 0.8 mg/L+/- 0.1mg/L	Check system operation and SCADA alarms and re-adjust the dose rate if required	<0.5mg/L and >1.1mg/L	Re-calibrate if required and reset flow controllers. Ensure free chlorine level is within target range.
	рН	Optimum pH	Daily	Reading from Analyser Panel	In-house	6.5-8.0	Ensure analyser is functioning correctly (Verify using HACH pH meter HQ11D)	<6.5, >8.0	Bypass pH compensator function and repair probe.

Appendix F: Operational Procedures and Monitoring

Procedures

Procedure	Version Date	Comments	Next Review Date
Operations and Maintenance	Version 2	Procedure Manual	To Be Split into individual procedures in 2021
Flushing water Mains			
Cleaning Reservoirs			
Water Sampling			
Transportation of Samples			

Daily Reading Sheet

	Daily C	hecklist	
Testing for Free Chlorine in Situ	HACH Instruction Manuals	To Be Finalised	2023
Testing water samples in PASC LAB	HACH Instruction Manuals	To Be Finalised	2023
Collecting Water samples	Version 1	To be updated to reflect new sampling pi	2023
Palin Test Instruction Procedure	Version 1	Procedure Manual	2023
Boil Water Alert Procedure	Version 1	Procedure Manual	2023
Quarterly Reporting Procedure	Version 1	Procedure Manual	2023
Calibration and setpoint adjustment procedures for SCADA controlled gas chlorination equipment	Version 1	To be finalised from data from 2017/2018 Project O&M manuals	2023
Disinfection - Gas Chlorination equipment operations manual	Version 1	Data currently in 2017/2018 Project O&M manuals. To be condensed for operator use	2023

Operational Monitoring Overview

<u>Operational monitoring</u> The Operational monitoring for Pormpuraaw contains a planned sequence of measurements and observations to ensure that the system is operating within the set performance limits and the process elements are controlled.

Location, Monitoring Action, and Frequency

The following locations and frequency are in place.

Operational Monito	pring Frequency				
Operational Monit	oring		Frequency		
Bores					
Check Bore Operat	ions		Daily		
Inspection of Bore F	Flow Rates		Weekly		
General Site Inspec	tion and Fence Integrity Check		Weekly		
Inspection of Switch	nboards (By Electrician)		Quarterly		
Inspection of Bore B	Electrical Integrity (By Electrician))	Quarterly		
Inspection of Bore [Drawdown Capabilities		Annually		
Treatment Plant a	nd Reservoirs				
Check Pump Opera	ations		Daily		
	Check Chlorine Levels		Daily		
	Check Chlorine Stock Levels		Daily		
		Check Chlo	rine Operations		Daily
Inspection of Pump	Flow Rates	Weekly			
General Site Inspec	tion and Fence Integrity Check	Weekly			
Check of Float Swit	ches, sensors & Corrosion	Monthly			
Inspection of Switch	nboards (By Electrician)	Quarterly			
Inspection of Pump Electrician)	Electrical Integrity (By	Quarterly			
Inspection of Reser	voir Cleanliness	Annually			
Reticulation					
Check for Leaks		Daily(Drive			
Check Hydrant Op	eration	Quarterly			
Check Valve Opera	ations	Quarterly			
Check Water Meter	Readings	Half Yearly			
Check Special Meter	ers	As Required	1		

Visual Checks

These are completed on a daily basis this includes but is not limited to:

- Fence Integrity
- All Chlorine equipment is working properly and supplied correctly
- High Lift pumps are operational
- Booster pumps are operational •
- Reservoir levels both on-site and on computer (SCADA) •

- Chlorine Levels both on-site and on computer (SCADA)
- Backup Generator (2) (General)

Backup Generation

These are described below:

- Backup Generators are started once a fortnight
- Backup Generators are serviced every 6 months

Sampling

Operational monitoring samples are undertaken at 11 separate locations around the community. This also allows for a snapshot average of the whole community.

All of the following test points have their own dedicated testing point that can only be accessed by an Authorised Person.

Each testing point with the exception of Testing Point 1 and testing Point 4 are immediately before the water meter.

Testing Point 1 – Is approximately 20 metres from the water meter and Testing Point 4 is after the high lift pumps (this captures the chlorine level as it leaves the clear water tank).

This marker is at every Test Point (1 – 12).

Locations of Water Testing Points

Test points are located at:

- Water Test Point 1 Plumbers Shed
- Water Test Point 2 Child Care Centre
- Water Test Point 3 School
- Water Test Point 4 Reservoir
- Water Test Point 5 Main Roads Camp
- Water Test Point 6 Chlorine Trickle Trim
- Water Test Point 7 North West House
- Water Test Point 8 North East House, 218 Maanth Street
- Water Test Point 9 South East House, 251 Raaku Street
- Water Test Point 10 South East House, 194A Rirranth Street
- Water Test Point 11 Kiosk/Canteen
- Water Test Point 12 Airport

In addition to the 12 sampling points, water is tested at:

Bore 1

- Bore 2
- Chlorine analyser at the Water Treatment Plant

The sampling locations are shown on the map below.

Sampling Location Photos

Figure 1 Test Point 1- Plumbers Shed

Figure 3 Test Point 3- School

Figure 2 Test Point 2- Child Care Centre

Figure 4 Test Point 4- Reservoir

Figure 5 Test Point 5– Main Roads Camp

Figure 7 Test Point 7– North West House

Figure 9 Test Point 9–251 Raaku Street

Figure 11 Test Point 11– Canteen/Kiosk

Figure 6 Test Point 6- Chlorine Trickle Trim

Figure 8 Test Point 8-218 Maanth Street

Figure 10 Test Point 10–194A Rirranth St

Figure 12 Test Point 12- Airport

Parameters Tested

Г

The following table indicates the location and parameters tested:

	DAY	MARCH 202	21	
ITEM	LOCATION		EXAMPLE	ACTUAL
1	SCADA Rainfall	mm	- 24 hours	
	SCADA Usage -			
2	Computer	kl	- 24 hours	
3	Plumbers Shed	Free Chlorine	Test Point 1	
4	Plumbers Shed Test Point 1	Turbidity	Tuesday	
5	Plumbers Shed Test Point 1	Free Chlorine	Tuesday	
6	Bore 2	Daily	Meter Read	
7	Bore Pump 2	Turbidity	Tuesday	
8	Bore Pump 2	Free Chlorine	Tuesday	
	Check Control Board NO Orange			
9	Lights	YES/NO	Meter	
10	Hi Lift Pump	Daily	Meter Read	
11	Bore 1	Daily	Meter Read	
12	Bore Pump 1	Turbidity	Tuesday	
13	Bore Pump 1	Free Chlorine	Tuesday	
14	Analyser Display Reading	Free Chlorine	Analyser	
15	Analyser Display Reading	рН	Analyser	
16	Sulphuric Acid - LIGHT ON or OFF		Analyser	
17	Sulphuric Acid - pH Reading		Analyser	
18	Sulphuric Acid Flow Detected	YES/NO	Analyser	
	Suphuric Acid Pump Dose Rate			
19	Mg/Min		Analyser	
20	Reservoir	Free Chlorine	Test Point 4	
21	Chlorine Trim Trickle	Free Chlorine	Test Point 6	
22	Main Roads Camp	Free Chlorine	Test Point 5	
23	Main Roads Camp	Mon and Thurs	Meter Read	
24	Main Roads Camp	Turbidity	Tuesday	

PORMPURAAW ABORIGINAL SHIRE COUNCIL DAILY READING SHEET

25	Main Roads Camp	Free Chlorine	Tuesday
26	School	Free Chlorine	Test Point 3
27	School	Mon and Thurs	Meter Read
28	Booster Pump	Daily	Meter Read
29	Child Care Centre	Free Chlorine	Test Point 2
30	NE House - 216 Manth	Free Chlorine	Test Point 8
31	NW House - 204A Piithamp Street	Free Chlorine	Test Point 7
32	Child Safe House	Mon and Thurs	Meter Read
33	Womens Refuge	Mon and Thurs	Meter Read
34	SE House - 251 Raaku Street	Free Chlorine	Test Point 9
35	Rise Gardens	Mon and Thurs	Meter Read
36	SW House - 194A Rirranth Street	Free Chlorine	Test Point 10
37	Police Station	Mon and Thurs	Meter Read
38	Canteen - Kiosk	Free Chlorine	Test Point 11
39	Croc Farm	Mon and Thurs	Meter Read
40	Airport	Free Chlorine	Test Point 12
41	Beaches	Mon and Thurs	Meter Read

SWIMS DATA ENTRY;-/03/2021

Appendix G: Verification Procedures and Monitoring

Verification Procedures

PASC WATER PROCEDURES

Cairns Water Lab Water Sampling

REQUIRED -

- Small Esky Ice Block Sample Bottles In House E.coli Detection Sample Bags In House E.coli Detection Sample Bottles Gas Burner Chain of Custody Form Key to open Taps Hand wash (sanitizer) Disposable Gloves
 - Fill in Chain of Custody form as much as possible before leaving office including order number.
 - Allow at least 45 minutes to complete all testing
 - Ensure Daily sampling has been completed and reading are acceptable for free chlorine (that is should be 0.5 or more)
 - Make sure you have spoken to Airport (Scruffy) Manager to confirm what time samples must be at airport by.
 - Normally samples are undertaken 3rd Tuesday of the Month
 - Normally 6 samples are taken(monthly)
 - Water Test point 6 NW House
 - Water Test Point 7 NE House
 - Water Test point 3 School
 - Water Test Point 8 SE House
 - Water Test Point 9 SW House
 - o Water Test Point 10 Canteen
 - Two extra samples are taken JANUARY, APRIL, JULY & OCTOBER
 - o Bore 1
 - o Bore 2
 - Two extra samples are taken JANUARY, JULY
 - Sewer Ponds Inlet
 - Sewer Ponds Outlet

PROCEDURE

- 1. Turn tap full on to flush water for two minutes
- 2. Turn tap off
 - 3. Burn tap for at least one minute
- 4. Turn tap back on low flow
- 5. Wash Hands with Sanitizer (Sampler)
- 6. Wear gloves
- 7. Remove lid from sample bottle
- 8. Fill container, to top line, do not allow to overflow
- 9. Replace lid 10. Replace sample bottle in esky with ice block
- 11. Record time on chain of custody
- 12. Fill in house E.coli detection bag to line
- 13. Shake bag until small tablet dissolves
- 14. Pour bag into In house detection bottle
- 15. Replace bottle into secure safe location
- 16. Turn off water
- 17. Remove gloves
- 18. Attend next site
- 19. Repeat procedure

Only remove the lid of the sample bottles when you are ready to fill the sample bottles

Once you have removed the lid from the sample bottle. TRY NOT TO TOUCH anything except the outside of the bottle or the lid. Even with gloves on you might contaminate the water by touching the inside of the lid, the thread etc

- 20. When all samples are taken return to shed and if you have time place Cairns Water Sample bottles in Freezer until its time to take to Airport(usually after lunch)
- 21. In house E.coli samples can be placed in our small oven for 24 hours.
- 22. Sending samples to Cairns, Make sure chain of custody is with samples as well as ice block
- 23. Seal container and place CAIRNS WATER LAB contact and address
- 24. Take to airport and hand over to Airport Manager

Draft number	Draft Author	Draft Date	Comments
01	ASH	6/11/2016	

PASC WATER PROCEDURES

Positive Results

Once we receive a positive result from Cairns Water WE MUST ACT IMMEDIATELY. A positive result is any E.coli reading that is <u>ONE or MORE THAN ONE</u>

REMEMBER WE DO HAVE VULNERABLE ADULTS AND CHILDREN IN OUR COMMUNITY AND WE MUST TREAT EVERY POSITIVE RESULT AS A POTENTIAL KILLER

You have 3 hours once you have been made aware. Note time you became aware. Cairns Water Lab will email or ring you. That is dependent on your readings and their protocols. They also contact the Water Regulator and the Department of Health

- 1. Contact Water Regulator by ringing 1300 596 709
- Contact Raquel Esteban, Department Energy and Water Supply and advise her (she might be that answers anyway). Raquel is our contact within the department and is always very helpful.
- 3. Advise them of your non conformance
- 4. Note time.
- 5. They will ask your intentions
- 6. First intention is always to undertake major Flushing Mains either side of non compliance
- 7. Second intention is contact of all on contact list
- 8. Third intention is to complete re test as soon as possible
- 9. They will ask what your chlorine reading at that location was that morning.
- 10. Have the answer ready.
- They will ask for your opinion of what you think happened to get the result. You must be honest. If its human error or maybe it is actually a contaminant in our water supply
- 12. Contact CEO, RANGER & OPERATIONS MANAGER
- 13. We are there to assist
- 14. Ring Chris Blake or Brad Milligan QLD Health in Cairns, advise them and ask for guidance.
- 15. Flushing mains might be enough, boiled water alert or more serious actions may be required
- Once you have been advised by Qld Health put an urgent email to all as per our attached contact list advising them of the non compliance and what you intend to do, (Example Attached)
- 17. If required ask for more input from CEO (refer attached Flyer)
- 18. Once you have completed everything above, then the paperwork will start.
- 19. The form, INITIAL NOTIFICATION, I have attached two, one is completed as an example and then there is a blank spare.
- 20. This must be completed with 24 hours and scanned and emailed to : dinkingwater.reporting@dews.qld.gov.au
- 21. I would also send to Raquel.esteban@dews.gld.gov.au.
- You will receive a response with an incident number (example DWI-7-148-00007), please use that from then on any correspondence.
- 23. This PART 1 is only 4 pages long.

- 24. When you have completed your re test and you have received your results and they pass. You will then contact Water Regulator 1300 596 709, Raquel, Chris, Brad, CEO, Ranger, Operations Manager and advise them.
- 25. You can also request that any action that has been imposed be lifted (Boiled Water Alert)
- You can now complete the paperwork, remember to quote your incident number, (write it on the paper)
- The second set of paperwork is very important and must be completed within a reasonable timeframe. I would suggest within 10 working days.
- 28. This is the INVESTIGATION REPORT (three more pages)
- 29. INVESTIGATION ACTIONS
- **30. INVESTIGATION OUTCOMES**
- **31. CORRECTIVE ACTIONS**
- **32. PREVENTATIVE ACTIONS**
- 33. Again I have supplied a sample and a blank one for you to use
- 34. Once Complete Scan & Email as per previous
- 35. Remember times and dates are very important so try to keep track of all times and dates within your non compliance

<u>NOTE</u> NONE OF THIS SHOULD EVER BE A FINGER POINTING EXCERISE IT IS ALWAYS A LEARNING EXPERIENCE

IMPORTANT PHONE NUMBERS

DRINKING WATER REGULATOR	1300 596 709
RAQUEL ESTABEN	0731 994 858
CHRIS BLAKE	0447 065 112
BRAD MIILIGAN	0742 265 591
CEO	0408 155 019
RANGER	0458 001 051
OPERATIONS MANAGER	0409 211 067

Draft number	Draft Author	Draft Date	Comments
01	ASH	6/11/2016	
02	ASH	22/11/2016	
14 (A)			

Verification Monitoring Program The table below summaries the verification monitoring with target and critical limits and how and levels that exceed the critical limits are managed.

Parameter	ADWG or Regulation Value	Associated Hazard	Frequency Tested	Test Location (As Per 6.1.1)	Independent Analysing Authority	Response to Exceeding Limits
E.coli	<1 cfu/100mL	 Bacteria (Harmful) System Integrity 	Monthly	 WTP6–NW House WTP7-NE House WTP3-School WTP8-SE House WTP9-SW House WTP10-Canteen 	Cairns Region Council Water Laboratory – NATA accredited	 Environmental Manager to report to Queensland Water Supply Regulator Senior Plumber to resample. Senior Plumber to investigate cause and rectify Senior Plumber to adjust chlorine rates at all points
Total Coliforms	<1 (additional limit added by council)	 System Integrity. Treatment Effectiveness. Post Treatment Ingress 	Monthly	 WTP6–NW House WTP7-NE House WTP3-School WTP8-SE House WTP9-SW House WTP10-Canteen 	Cairns Region Council Water Laboratory – NATA accredited	 Senior Plumber to investigate cause and rectify Senior Plumber to adjust chlorine rates at all points
Heterotrophic Plate Counts	≤10 (additional limit added by council)	 System Cleanliness. Post Treatment Ingress. Biofilm Formation. 	Monthly	 WTP6–NW House WTP7-NE House WTP3-School WTP8-SE House WTP9-SW House WTP10-Canteen 	Cairns Region Council Water Laboratory – NATA accredited	 Senior Plumber to investigate cause and rectify Senior Plumber to adjust chlorine rates at all points

The following table summarises the additional quarterly monitoring of the groundwater condition at the 2 bore sites to confirm supply is within Australian Drinking Water Guidelines

Parameter	ADWG or Regulation Value	Associated Hazard	Frequency Tested	Test Location	Independent Analysing Authority	Response to Exceeding Limits
E.coli	<1 cfu/100mL	Bacteria (HARMFUL) System Integrity	Quarterly	Bore # 1 and Bore # 2	Cairns Region Council Water Laboratory – NATA accredited	 Environmental Manager to report to Queensland Water Supply Regulator. Senior Plumber to resample. Senior Plumber to investigate cause and rectify. Senior Plumber to adjust chlorine rates at all points.
рН	6.5 – 8.0 (NOT a health concern)	Corrosion.	Quarterly	Bore # 1 and Bore # 2	Cairns Region Council Water Laboratory – NATA accredited	 Monitor and advise DEWS.
Turbidity	1 NTU (NOT a health concern)	Aesthetic. Chlorine Demand	Quarterly	Bore # 1 and Bore # 2	Cairns Region Council Water Laboratory – NATA accredited	 Monitor and advise DEWS.
Metals Nutrients and Anions TDS Alkalinity Conductance	Varies	Varies	Quarterly	Bore # 1 and Bore # 2	Cairns Region Council Water Laboratory – NATA accredited	 Monitor and advise DEWS.
Appendix H: Complaint Checklist and Register

WATER & SEWERAGE COMPLAINTS CHECKLIST

- Complainant to contact relevant service area of Council, usually Housing Officer
- Make a Complaint in any of the following ways
 - a) Orally, either by telephone or in person to the Housing Officer;
 - b) By email to housing@pormpuraaw.qld.gov.au or
 - c) In writing (by letter or fax) addressed to the Housing Officer
 - d) Phone call to the BAS call centre.
- All relevant documentation forwarded to Housing Officer.
- In general terms, the Council will endeavour to meet the following timeframes for dealing with Complaint –
 - a) For Urgent matters within 12 hours.
 - b) For non-urgent within 14 days.
- There must be opportunity for Complainant to provide further information about the Complaint.
- Housing Officer to notify Senior Plumber, Ranger and Operations Manager (and CEO if necessary) as soon as practicable about the complaint.
- The Housing Officer, Senior Plumber and the Complainant must decide on the type of complaint and its priority
- Senior plumber to register complaint in register as soon as possible
- Senior Plumber Investigate complaint as soon as possible after being notified.
- Senior Plumber to advise outcome to Housing Officer, Ranger & Operations Manager (and CEO)
- Housing Officer to notify complainant
- · Housing officer to advise Senior plumber any feedback or comments from complainant.
- Senior Plumber to update Complaints Register
- Every 12 months a review on all Complaints received through the Water & sewerage Complaints process.
- The Water regulator must be advised of all complaints within 120 days of the 31st July as part of the annual report

		<i>M</i>	CON	IRAW ABORIGIN WATER & SEV	VAL SHIRE COU VERAGE REGISTI	ER	
Date	Client/Complainant's Name & Address	Contact Number.	Type of Complaint	Nature/ Details of Complaint	PRIORITY (RISK)	Comments and Follow up Action. This must Include name of employee responsible for follow up.	Feedback from Client Status Date Finalised
			Water, Odour		Extreme		
		I D	Water, Taste		Very High		
			Water, Colour		High		
		I D	Water, Other		Medium		
		a - 25	Sewer	57	Low	6	1
	13.15		Water, Odour	e.	Extreme		
			Water, Taste		Very High		
			Water, Colour		High		
			Water, Other		Medium		
			Sewer		Low		
			Water, Odour		Extreme		
		I C	Water, Taste		Very High		
			Water, Colour		High		
		I D	Water, Other		Medium		
			Sewer		Low		
	10.12		Water, Odour	5	Extreme	с	
			Water, Taste		Very High]	
			Water, Colour		High		
			Water, Other		Medium		
		L	Sewer		Low		

File U Drive/Plumbing/Complaints Register/Version 1

Next Review Due

8/04/2016 8/04/2018

Appendix I: Drinking Water Quality Management Improvement Plan

Risks					Existing Preventative Measures Reasons for Selection of Likelihood and		Future Controls			
Process Step	Item No.	Hazard	Туре	Hazardous Event	(Upstream of and at Current location)	(Upstream of and at Current location) Consequence Scores		Assigned to	Priority /Year	Budget
Catchment	CMT1	Bacteria/Virus	Biological	Animals in catchment	Alternative water sources are available (bores) however no management procedure exists to choose to switch over during poor water quality periods.	There is a catchment management plan in place. Controls in place.	Add procedure for alternative water supply switch over.	Senior Plumber	2023	Internal Wages
Catchment	СМТ9	Iron	Chemical	Natural geology, sediment	See CMT1	3 years of WQ results reviewed.	Investigate potentially shandy water sources. Investigate the WQ results as they were significantly different. Check future risk score.	Senior Plumber	2024	Internal Wages
Catchment	CMT15	Scaling	Chemical	TDS or organics in raw water		3 years of WQ results reviewed. Aesthetic risk.	Continue to monitor this parameter. Consider a filtration unit.	Senior Plumber	Ongoing	Internal Wages
Catchment	CMT16	Alkalinity	Chemical	Potential change in ratio of surface runoff to storage		3 years of WQ results reviewed. Aesthetic risk.	Continue to monitor this parameter. Consider a dosing unit.	Senior Plumber	Ongoing	Internal Wages
Chemical Dosing	CMT15	Scaling	Chemical	TDS or organics in raw water	Oxidation	Possible partial oxidation of dissolved solids, however this may introduce THMs.	Test for THMs in the treated water. Future control risk not reduced at this time.	Senior Plumber	2023	1,000
Chemical Dosing	CMT16	Alkalinity	Chemical	Potential change in ratio of surface runoff to storage		no change	Investigate a future filtration plant which will have benefits to other risk items.	Senior Plumber	2023	25,000
Chemical Dosing	DIS1	Chlorate	Chemical	chemical breakdown	Set points and chlorine analysers, Change to Chlorine Gas always 100% strength. No degradation	This risk is for dosing performance which is adequate.	Continued Training of all staff.	Senior Plumber	Ongoing	Internal Wages
Chemical Dosing	DIS2	Chlorine	Chemical	chemical underdose, or injection or recirculation pump or gas injector equipment failure	Set points and chlorine analysers, Daily inspections, SCADA monitoring and provision of backup Systems	PASC has acquired a list of critical spare parts for system and purchase as spare parts - Spare pumps, injectors, gas valves etc. were procured in 2019.	Ensure adequate spare parts on hand including replacement pumps, ejectors and fittings	Senior Plumber	Ongoing	Internal Wages
Reservoirs	CMT17	рН	Chemical	pH reacting with walls	All Reservoirs have Inspections annually		Reservoir inspections to be held mid year & documented	Senior Plumber	Ongoing	Internal Wages
Reservoirs	WTP1	Various Contaminants	Physical/Chemical etc.	telemetry failure allowing untreated or semi-treated water through.		No reduction as the backup systems or failure management systems are not properly understood.	Investigate SCADA management during failures	Senior Plumber	2024	Internal Wages
Reservoirs	RES1	Bacteria/Virus	Biological	Animals in reservoir	Reservoir cleaning and scouring	All Reservoirs are roofed, waterproofed and vermin proofed. Inspection carried out annually	Reservoir cleaning procedure is currently being developed. Inspections to be held midyear & Documented	Senior Plumber	2024	Internal Wages
Reservoirs	RES2	Bacteria/Virus	Biological	Poor Tank turnover	Operational settings in place.	Lower frequency of potential issues due to daily inspections.	Procedure required for tank turnover	Senior Plumber	2023	Internal Wages

Reticulation	WTP1	Various Contaminants	Physical/Chemical etc.	telemetry failure allowing untreated or semi-treated water through.	Daily checks	The backup systems or failure management systems are not properly understood. Only relevant for pressure and flow values.	Investigate SCADA management during failures. Assess future risk.	Senior Plumber	2024	Internal Wages
2ndaryDis	WTP1	Various Contaminants	Physical/Chemical etc.	telemetry failure allowing untreated or semi-treated water through.		No reduction as the backup systems or failure management systems are not properly understood. Only relevant for pressure and flow values.	Investigate SCADA management during failures	Coordinator Treatment	2023	Internal Wages
Whole of System	WOS6	Governance	Cybersecurity	Lack of asset management	Our SCADA provider has developed and implemented a governance framework with responsibilities /policies /procedures for information technology security. These include: - Information Systems (IS) Policy, - Computer Systems and Equipment Use Standard, - Information Systems Management Guidelines	Controls in place.	MC-01-Vulnerability assessment Undertake a cybersecurity audit including a penetration test: - identify critical sites, devices, and access points specific to the Supervisory Control and Data Acquisition (SCADA) for water quality management. These will include 1) pump sites 2) related operational technology systems - servers, firewalls, network switches, access points, Remote Terminal Units (RTUs) and Programmable Logic Controllers (PLCs). 3) Implement actions to maintain effective cyber security controls of SCADA and Industrial Control Systems (ICS). 4) Implement actions to manage both (IT) and (CT). 5) Implement a single point access to enter the telemetry network.	SCADA Maintainer	2025	10,000
Whole of System	WOS7	Governance	Cybersecurity	Inability to detect critical Assets	As above		MC-02 - Governance structure - Framework to be in place with responsibilities - Procedures for information technology and operation technology security to be created MC-03 - Security safeguards - Create a list of permitted applications to be installed / run within Council's Standard Operating Environment (SOE)	SCADA Maintainer	2025	3,000
Whole of System	WOS8	Intentional Interference	Cybersecurity	Disruption of Cyber information (IT)	As above	IT antivirus software currently installed. OT SCADA machines will not have anti-virus installed as it can interferes with SCADA installed software. Cybersecurity of OT SCADA machines is controlled by restricting internet access and eliminating the use of external USB drives and fire wall settings.	MC - 04 Detection process - Require SOE security monitoring system that reports anomalies. e.g. high CPU use, user accounts, high network traffic MC-05 Response & Recovery - Organise routine backups / archiving for ICS equipment, servers and applications.	SCADA Maintainer	2025	3,000

Whole of System	WOS12	Unintentional Interference	Cybersecurity	Disruption of Cyber information (IT)	As above	As above	MA - 01 Build out private SCADA network - requires testing and cutover for all water facilities, sites & equipment MA - 02 Build single point of access and authentication method - Undertake after MA-01. A single point access should be built as a mechanism to enter the telemetry network. MA - 03 Implement rules to prevent across network access - After MA-01 & MA-02, SCADA provider to create and document a procedure for secure entry to the TI/OT network. MA - 04 Disallow open internet access - To be actioned with MA-01 & MA-02, Address vulnerability scenarios but also allows for system updates (e.g. allowing Windows Update).	SCADA Maintainer	2025	10,000
Whole of System	WOS17	Abuse of Cyber Information	Cybersecurity	Systems Configuration and data files	As in WOS6		MA-05 Install and enable active virus scanning - OT SCADA machines will not have anti-virus installed as it can interferes with SCADA installed software. Cybersecurity of OT SCADA machines is controlled by restricting internet access and eliminating the use of external USB drives and fire wall settings MA-06 Activate and set windows firewall rules - Do after MA-01 is completed MA-07 implement maintenace and updates schedule - Maintenance will be ongoing in terms of updating SCADA software. All upgrades or changes to a PLC or SCADA shall have their configuration files backed up and saved on each workstation on-site and off-site. MA-09 Eventicate or key based authentication for remote access - Do after MA-01 is completed MA-09 I wird factor authentication - Do after MA- 01 is completed	SCADA Maintainer	2025	10,000

Whole of System	WOS21	Control	Cybersecurity	Lack of access control and identity management	As in WOS6	MA-10 Implement backup schedule - To be done as part of regular maintenance of IT/OT systems. Backups of configurations files to be made and stored onsile with a copy stored off-site in the secure corporate Drive, and with the SCADA provider. MA-11 Ensure validity of software licences used across machines - Ongoing as all SCADA OT software is licenced and authentication is used across SCADA OT machines.	SCADA Maintainer	2025	2,000
Whole of System	WOS22	Technical advancement	Cybersecurity	Lack of protective technology and maintenance	As in WOS6	Perform routine manual operation of sites, and ensure documentation exists for operating procedures. Staff should be trained and deemed competent to run manual operation of sites. Training of manual mode operations for each facility ongoing	Senior Plumber	2025	Internal Wages
Whole of System	WOS23	Detection	Cybersecurity	Inability to detect a cyber security event	As in WOS6	Increased awareness from operators surrounding physical security access on ICS sites, provided by means of training sessions. Add this to the procedures	Senior Plumber	2025	Internal Wages
-	E1-1	Support	Adoption	Lack of support	General support	Adopt a DWQM Policy	Senior Plumber	2023	Internal Wages
-	E2-1	Information	Information	Lack of information	Procedures	The writing of new and updated procedures which will be managed by an annual calendar	Senior Plumber	Annually	Internal Wages
-	E2-2	Information	Information	Poor information storage and retrieval.	SWIMs Database	An updated and extended data management system such as SWIMLocal which again, will be managed by an annual calendar	Senior Plumber	Annually	Internal Wages
-	E2-3	Water Quality	Water Quality	Poor water quality event	Adequate verification and monitoring program	The operational and verification monitoring plan is reviewed and clear.	Senior Plumber	Annually	Internal Wages
-	E2-4	Whole of System	Whole of System	Lack of capital and operational funding	Part of a broader management assessment.	The water capital and operational budget planning process reflect the above medium to long-term aspirations	Executive Manager Environment	Annually	Internal Wages

	E7-1	Personnel	Skills	Poor competency leading to a risk event.	Qualified supervisory staff	Training needs are assessed and implemented. It is important Certificate III certification is held for at least 2 personnel so that backup personnel can step into roles when needed. Certificate II qualifications should also be held by others. WIOA training will also be of benefit. Consider specific training for chlorine and pH dosing.	Senior Plumber	Annually	Internal Wages
	E8-1	Public Health	Community	Poor water quality event	DWQM System	Website information is added for locations that have a potable water supply, including: - Description of how PASC manages water quality; - Discussion of issues on drinking water quality, public health and risk assessment, cost of treatment and levels of service; - Details of the water supply system and the drinking water quality management system; - Incident and emergency response plans, including procedures for notification when drinking water quality poses a health risk; - Consumer responsibilities beyond the tap; - The need for further treatment of water for special purposes (e.g. vulnerable persons); and, - The role and responsibility of the community in protecting water supply catchments and water conservation.	Senior Plumber	2024	Internal Wages
-	E9-1	Whole of System	Investigations	Early Warnings		Development of early warning procedures to improve the management of poor water quality in both the raw and treated systems (e.g. preparation leading up to the wet season);	Senior Plumber	2024	Internal Wages
-	E9-2	Whole of System	Whole of System	Review of water quality characteristics		A review of the selection of water quality characteristics to be analysed and provide specific requirements for individual sites	Senior Plumber	2023	Internal Wages
-	E9-3	Whole of System	Whole of System	Auditing procedures to ensure information is correct.		Auditing sampling and testing procedures, evaluation and management of results	Senior Plumber	2023	Internal Wages
-	E9-4	Whole of System	Whole of System	Review of asset condition and performance		It is intended that the existing assets and future system augmentations be included in an asset management system to ensure that poorly performing or ageing critical infrastructure is identified and replaced before failure	Senior Plumber	2025	Internal Wages
-	Audit-1	SCADA	Information	Incorrect information	Nil	Create a procedure for verifying the SCADA parameters regularly with verifiable results	Senior Plumber	2023	Internal Wages
-	Audit-2	Public Health	Contamination	Mains break and repairs		 Create/update mains repair procedure to include machinery disinfection prior to use in water management situations where cross- contamination may be a risk	Senior Plumber	2023	Internal Wages
-	Audit-3	Public Health	Contamination	Purchase of unapproved materials		A procedure needs to be in place to ensure that all drinking water materials purchased are certified to Australian Standards or are WaterMark approved	Senior Plumber	2023	Internal Wages

-	Audit-4	Whole of System	Staffing	Staff not available to attend water quality incidents or to manage the system effectively.		Implemented a roster system	Senior Plumber	2023	Internal Wages
-	Audit-5	Whole of System	Skills	Low competency to manage a critical risk event.		Add a scenario for water treatment for the next mock emergency practice	Senior Plumber	2023	Internal Wages
-	Audit-6	Water Quality	Information	Incorrect information		Create an instrument calibration program, and create a procedure for regular calibration of the various instruments	Senior Plumber	2023	Internal Wages

Appendix J: Acid Dosing System Details and Operations /Maintenance Procedures

Technical Schedule CPS71D pH Probe

ITEM	UNIT	DESCRIPTION
Location	-	Water Treatment Plant (chlorine room)
Date Installed	-	September 2020
Manufacturer	-	Endress & Hauser 16 Griffnock Ave Macquarie Park, NSW 2113 (02) 8877 7000
Probe Model	-	CPS71D-7TB21
Cable Model	-	CYK10-A051
Retractable Assemble Model		CPA450-0B110
	Probe	R3350005E00
Serial Number	Cable	R5059F05KA0
	Assembly	R5001205A09
Measurement Type		Selective Penetration (H ⁺)
Process Diaphragm		Ceramic
Sensor Range	pH units	0 to 14
Process Temperature	°C	0 to 140
Minimum Conductivity	µS/cm	10
Weight	kg	0.1
Materials	-	Electrode Shaft - Glass pH Membrane Glasses - Type B Metal Lead - Ag/AgCl Diaphragm - Ceramic Reference Gel - Acrylamide-free
Degree of Protection	IP	68

Page 82 of 101

pH PROBE

A –

Picture 2 - Probe Details & Dimensions

- 1 Memosens plug-in head
- 2 Viton O-ring with thrust collar
- 3 Ag/AgCl reference lead with ion trap
- 4 Junction
- 5 Temperature sensor
- 6 Ag/AgCl internal reference lead pH
- 7 pH glass membrane

Picture 3 - Retractable Assembly Elements

- 1 Setting collar for setting the immersion depth
- 2 Bore hole for hook wrench
- 3 Rinse connection G¼ (316L) NPT ¼* (Alloy C22 or titanium)
- 4 Service chamber
- 5 Safety kit
- 6 Sensor holder with protection guard
- 7 Immersion tube
- 8 Lever for opening/closing the ball valve
- 9 Locking ring (metal)
- 10 Coupling nut (black)
- 11 Allen screw M5 / AF4
- 12 Cable protector/cable gland

Picture 4 - Electrical Connections

MAINTENANCE

Required maintenance for the equipment is summarised below. Each and every detail or step has not been noted as review of the user manual is required before undertaking required maintenance work. If unsure contact Factor UTB on (08) 8271 6044 or the supplier prior to undertaking maintenance work.

There is a risk of infection when servicing equipment. Rinse the equipment thoroughly with clean water before working on it. While undertaking the work wear protective gloves and do not touch parts of your body specifically orifices such as your mouth, nose or eyes. Wash hands in warm soapy water once the work is complete and launder clothes that day.

Weekly the Operators are to remove the probes from the process and wash in a bucket of clean water before returning them to the tanks. The glass electrode is fragile, careful handling is required.

The Ceragel measuring cell to be replaced yearly. It is not recommended that the cell be calibrated on site as the solutions required to complete the calibration cost more than a new cell and decay over time. The Ceragel electrode is factory calibrated.

Clean away fouling on the sensor as follows depending on the type of fouling:

For Oily and Greasy films - Clean with grease remover, e.g. alcohol, as well as hot water and (alkaline) agents containing surfactants (e.g. dishwashing detergent).

For Lime or metal hydroxide Buildup and Low Solubility Organic Buildup - Dissolve buildup with diluted hydrochloric acid (3%) and then rinse thoroughly with clear water.

For buildup Containing Proteins - Use a mixture of hydrochloric acid (0.5%) and pepsin and then rinse with clear water.

For readily Soluble Biological Buildup - Rinse with pressurised water.

Refer to the enclosed manual for use of the retractable assemble. Failure to follow the procedures described in the manual when removing or returning the pH probe to the process may cause irreparable damage to the assembly or the pH probe. If unsure contact Factor UTB on (08) 8271 6044.

Technical Schedule Rev A - Acid Pump

ITEM	UNIT	DESCRIPTION
Location	-	Water Treatment Plant (chlorine room)
Date Installed	-	September 2020
Manufacturer	-	Watson Marlow 15/19-26 Durian Place Wetheril Park, NSW 2164 (02) 8787 1400
Pump Model	-	QDos30 Univ
Pump Item Number	-	0M0.284L.GRK
Head	-	Sebs PFPE
Head Item Number	-	0M3.2800.PFP
Туре	2	Peristaltic
Serial Number		200518-299031
Voltage	VAC	240
Manually Control Capability	-	Yes
Enclosure	IP	66
Control Inputs	mA	4 - 20
Maximum Discharge Flow Rate	mL/min	400
Maximum Discharge Pressure	bar	7
Weight	kg	5.1

SULFURIC ACID (50%) DOSING PUMP

UNDER NO CIRCUMSTANCE SHOULD WATER BE ADDED TO SULFURIC ACID – DOING SO MAY CAUSE INJURY TO YOURSELF OR OTHERS NEARBY. Refer to the Maintenance Section (page 6) of this document for other important information.

Picture 1 - QDos30 Components

Picture 2 - QDos30 Dimensions

Model	A	8	c	D	E—Optional relay modules (H or R)	F	6	н	1
qdos 30	234mm (9.2")	214mm (8.4*)	71.5mm (2.8°)	233mm (9.2")	43mm (1.7")	173mm (6.8°)	40mm (1.6")	140mm (5.57)	10mm (0.4*)

Picture 3 - Pump Duty

Picture 4 - Input Connection

Pin No.	Function	Specification	Referenced to	Input lead colour
1	Run/stop	Min. SV, max30V	Connect 5-24VDC supply to stop (referenced to pin 4). Alternatively, connect pin 5 of the output connector to this pin via normally open switch.	Brown
2	External Contact Reserved	Min. 5V, max .30V	Pulse 5-24V 40ms mnmum pulse length (referenced to pin 4). Alternatively, connect pin 5 of the output to this pin via normally open switch.	White
3	4-20mA	2502 input impedance 40mA max, ourrent 2502 load resistance 40mA max.current	Referenced to GND	Blue
4	GND	Ground (OV)		Black
5	Remote fluid recovery	Min. SV, max. 30V	Connect 5-24V DC supply to reverse the pump in analog mode	Grey

Picture 5 - Keypad Functions

	The pump displays a RED stop icon when it is in a manually stopped condition. In this state the pump will not start unless the START key is pressed.
II	The pump displays a RED PAUSE icon when it is receiving a remote stop input whilst in a standby condition. The pump is placed in a standby condition by pressing the START key in manual mode, or by selecting Analogue mode.
	In this state the pump will respond to a change in state of the start/stop input, and may start automatically when a control signal is received.
Ċ	When the pump is running it displays a turning icon to indicate a pumping state.

MAINTENANCE

Required maintenance for the equipment is summarised below. Each and every detail or step has not been noted as review of the user manual is required before undertaking required maintenance work. If unsure contact Factor UTB on (08) 8271 6044 or the supplier prior to undertaking maintenance work.

DANGER / WARNING:

Rotating elements of the peristaltic pump are sealed as such the risk of entanglement or crush is mostly eliminated. Always disconnect and lock out power before serving to prevent unexpected start up. Failure to do so could result in serious injury or death. Equipment operates automatically.

There is a risk of chemical burn when servicing equipment. Ensure appropriate PPE is use before commencing any service work. This includes rubber apron, elbow length rubber gloves, safety eye goggles equipped with side shields <u>and</u> full face shield. This safety equipment has been supplied to site. DO NOT PROCEED UNTIL YOU HAVE READ AND UNDERSTAND THE SAFE HANDLING METHODS AND RESPONSES as detailed in the Safety Data Sheet (SDS) enclosed. If unsure contact Factor UTB on (08) 8271 6044 or 0434 2300 71 before proceeding.

UNDER NO CIRCUMSTANCE SHOULD WATER BE ADDED TO SULFURIC ACID – DOING SO MAY CAUSE INJURY TO YOURSELF OR OTHERS NEARBY.

Adding water to acid will cause the solution to rapidly boil and cause splashing. If a dilution is required then acid <u>MUST</u> be added to a larger volume of water slowly and then mixed. We do not recommend that dilutions be prepared on site. There is no foreseeable reason for this to be undertaken at Pormpuraaw.

Sulfuric acid mixing with water reacts vigorously in a highly exothermic reaction. If you add 100mL of sulfuric acid to 100mL of water the temperature increase of the solution is more than 110° Celsius in less than a minute.

Ensure that all hoses, valves and pipelines are no longer under pressure and empty prior to removal or replacement of the pump head. While undertaking service work wear the minimum PPE as described above. Do not take shortcuts. If you do not have the correct PPE do not undertake the work. Wash hands in warm soapy water once the work is complete and launder clothes that day.

There are no serviceable parts inside the pump. The unit should be returned to Watson-Marlow for service. Both chemical dosing pumps utilise the same hose pump heads.

First Aid Measure (extracted from SDS). Refer to SDS for additional information.

For advice, contact a Poisons Information Centre (e.g. phone Australia 131 126; New Zealand 0800 764 766) or a doctor.

Inhalation:

Remove victim from area of exposure - avoid becoming a casualty. Remove contaminated clothing and loosen remaining clothing. Allow patient to assume most comfortable position and keep warm. Keep at rest until fully recovered. If patient finds breathing difficult and develops a bluish discolouration of the skin (which suggests a lack of oxygen in the blood - cyanosis), ensure airways are clear of any obstruction and have a qualified person give oxygen through a face mask. Apply artificial respiration if patient is not breathing. Seek immediate medical advice.

Skin Contact:

If spilt on large areas of skin or hair, immediately drench with running water and remove clothing. Continue to wash skin and hair with plenty of water (and scap if material is insoluble) until advised to stop by the Poisons Information Centre or a doctor.

Eye Contact:

SPEED IS ESSENTIAL. Immediately wash in and around the eye area with large amounts of water for at least 15 minutes. Eyelids to be held apart. Remove clothing if contaminated and wash skin. Urgently seek medical assistance. Transport promptly to hospital or medical centre.

Ingestion:

Immediately rinse mouth with water. If swallowed, do NOT induce vomiting. Give a glass of water. Seek immediate medical assistance.

Indication of immediate medical attention and special treatment needed: Treat symptomatically. Can cause corneal burns. Calibration – To be completed 6 monthly or after replacement of the pump head. Record in log book.

Select MODE

Using the +/- keys, scroll to Flow calibration and press SELECT.

Using the +/- keys enter the maximum flow rate limit and press ENTER.

Press START to begin pumping a volume of fluid for calibration.

Press STOP to stop pumping fluid for the calibration.

Using the +/- keys enter the actual volume of fluid pumped.

To accept the new calibration press ACCEPT or RECALIBRATE to repeat the procedure. Press HOME or MODE to abort.

The pump is now calibrated.

Pump Head Replacement

The pump head is a consumable part and cannot be serviced. Spare pump head were supplied to site. The pump head at both the Water Treatment Plant and Irrigation Site located adjacent the wastewater treatment lagoons are identical and suit each of the two chemical to be pumped (sodium hypo-chlorite and sulfuric acid).

- Ensure contaminated pump heads are not shipped but disposed of locally accordingly to
 regulations for contaminated items and health and safety procedures. Additional caution to be
 used when disposing of spent pump heads that were used at the Water Treatment Plant
 (sulfuric acid).
- Always isolate the pump from mains power before changing the pump head, suction or discharge lines.
- It is only possible to fit the pump head in one orientation with the arrow pointing upwards.
- Only lock / unlock the retaining clamps by hand. Do not use tools.
 - 1. Drain down.
 - 2. Ensure that there is no pressure in the pipeline.
 - 3. Isolate the pump from the mains power supply.
 - Ensure that protective clothing and eye protection are worn if hazardous products have been pumped.
 - Remove input and output connections from the pumphead (protecting the pump from any process fluid spillages).

6. Fully loosen the two pumphead retaining clamps.

 To disengage the pumphead from the retaining clamps, carefully detach the pumphead from the pump housing and rotate it in an anti-clockwise direction by approximately 15°.

8. Remove the pumphead from the pump housing.

 Safely dispose of the used pumphead according to your own health and safety regulations. Take care to comply with any safety requirements of the chemical being pumped.

10. Check that the leak detect sensor is clean and free from process chemical

Fitting a new pumphead

Fitting a new pumphead is a reverse procedure of the pumphead removal.

- 1. Remove the new pumphead from its packaging.
- Align the new pumphead with the pump drive shaft and slide into position on the pump housing.
- Rotate the pumphead in a clockwise direction by approximately 15° to engage the retaining clamps.
- 4. Tighten the retaining simultaneously clamps to secure the pumphead into position.
- 5. Connect the input and output connections to the pumphead.
- Apply mains power to the pump, press start and run the pumphead for a few revolutions.
- Stop the pump and isolate it from the mains power supply, then tighten the clamps further if necessary.

Appendix K: Draft Drinking Water Policy

Draft Drinking Water Quality Policy

Water Supply (Safety and Reliability) Act 2008

1. POLICY STATEMENT

Pormpuraaw Aboriginal Shire Council is committed to promoting and protecting public health by managing its water supply to provide safe, high-quality drinking water.

2. PRINCIPLES

Council wishes to ensure that it supplies high quality drinking water that meets or exceeds our DWQMP and the ADWG standards.

3. SCOPE

This policy applies to all workers responsible for the provision of drinking water to the declared water service areas of Pormpuraaw

PASC supplies both potable and non-potable water and this policy applies to potable water only.

4. RESPONSIBILITY

Managers are responsible for ensuring the policy is understood and adhered to all workers.

5. DEFINITIONS

ADWG - Australian Drinking Water Guidelines (2011 Version 3.4 Updated October 2017).

DWQMP - Drinking Water Quality Management Plan as referred to in the *Water Supply (Safety and Reliability) Act 2008*

Declared water service area – means the area to which council is able to offer a potable water service to properties. Not all properties within a local government area will have access to a potable water service.

Manager – includes persons appointed to positions with the title, Team Manager, General Manager, Principal, Director and Chief.

Potable water - Water that is safe to drink or to use in food preparation

Workers – includes employees, contractors, volunteers and all others who perform work on behalf of council

6. POLICY

The council wishes to provide safe, high quality drinking water, and will:

- a.manage water quality at all points along the delivery chain from "catchment to meter" by using a risk-based approach in which potential threats to water quality are identified, assessed and mitigated;
- b.integrate the needs and expectations of consumers, stakeholders, regulators and employees into its planning to provide and maintain a safe water supply;
- c.establish and maintain regular and effective drinking water quality monitoring and reporting mechanisms to provide relevant and timely information, that promotes confidence in the management of its water supply systems;
- d.develop appropriate contingency planning and incident response capabilities to manage incidents and other emergent events potentially affecting water quality;
- e.participate in appropriate research and development activities (including employee training) to ensure continued understanding of drinking water quality issues and performance;

f. contribute to setting industry regulations and guidelines, and other standards relevant to

public health and the water cycle;

g.continually improve its practices by assessing performance against corporate commitments and stakeholder expectations; and

h.openly communicate this policy to the community to encourage public awareness.

7. LEGAL PARAMETERS

Local Government Act 2009 Local Government Regulations 2012 Water Supply (Safety and Reliability) Act 2008 Public Health Act 2005

8. ASSOCIATED DOCUMENTS

Pormpuraaw Water Drinking Water Quality Management Plan 2021 Australian Drinking Water Guidelines (2011 Version 3.4 Updated October 2017)